Skip to main content
Log in

Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Although matrix model partition functions do not exhaust the entire set of τ-functions relevant for string theory, they are elementary blocks for constructing many other τ-functions and seem to capture the fundamental nature of quantum gravity an string theory properly. We propose taking matrix model partition functions as new special functions. This means that they should be investigated and represented in some standard form without reference to particular applications. At the same time, the tables and lists of properties should be sufficiently full to exclude unexpected peculiarities appearing in new applications. Accomplishing this task requires considerable effort, and this paper is only a first step in this direction. We restrict our consideration to the finite Hermitian one-matrix model an concentrate mostly on its phase and branch structure that arises when the partition function is considered as a D-module. We discuss the role of the CIV-DV prepotential (which generates a certain basis in the linear space of solutions of the Virasoro constraints, although an understanding of why and how this basis is distinguished is lacking) an evaluate several first multiloop correlators, which generalize the semicircular distribution to the case of multitrace and nonplanar correlators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Polyakov, Gauge Fields and Strings, Harwood, Chur (1987); M. Green, J. Shwarz, and E. Witten, Superstring Theory, Vol. 1, 2, Cambridge Univ. Press, Cambridge (1987); A. Yu. Morozov, Sov. Phys. Usp., 35, 671 (1992); J. Polchinski, String Theory, Vol. 1, 2, Cambridge Univ. Press, Cambridge (1998); A. V. Marshakov, Phys. Usp., 45, 915 (2002); hep-th/0212114 (2002).

    Google Scholar 

  2. A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2589 (1995); hep-th/9405011 (1994); A. D. Mironov, A. Yu. Morozov, and L. Vinet, Theor. Math. Phys., 100, 890 (1995); S. M. Kharchev, A. D. Mironov, and A. Yu. Morozov, Theor. Math. Phys., 104, 866 (1995); A. D. Mironov, Theor. Math. Phys., 114, 127 (1998); A. Mironov and A. Morozov, Phys. Lett. B, 524, 217 (2002).

    Google Scholar 

  3. M. L. Mehta, Random Matrices, Acad. Press, New York (1991); E. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber, Comm. Math. Phys., 59, 35 (1978); D. Bessis, Comm. Math. Phys., 69, 147 (1979); D. Bessis, C. Itzykson, and J.-B. Zuber, Adv. Appl. Math., 1, 109 (1980); C. Itzykson and J.-B. Zuber, J. Math. Phys., 21, 411 (1980).

    Google Scholar 

  4. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov, Nucl. Phys. B, 357, 565 (1991).

    Google Scholar 

  5. S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, and A. Zabrodin, Nucl. Phys. B, 366, 569 (1991).

    Google Scholar 

  6. A. Yu. Morozov, Phys. Usp., 37, 1 (1994); hep-th/9303139 (1993); “Matrix models as integrable systems,” hep-th/9502091 (1995).

    Google Scholar 

  7. A. Mironov, Internat. J. Mod. Phys. A, 9, 4355 (1994); Phys. Part. Nucl., 33, 537 (2002); I. K. Kostov, “Conformal field theory techniques in random matrix models,” hep-th/9907060 (1999).

    Google Scholar 

  8. A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 265, 99 (1991); S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and S. Pakuliak, Nucl. Phys. B, 404, 717 (1993); A. D. Mironov and S. Z. Pakuliak, Theor. Math. Phys., 95, 604 (1993).

    Google Scholar 

  9. I. Kostov, Phys. Lett. B, 297, 74 (1992).

    Google Scholar 

  10. J. Alfaro and I. K. Kostov, “Generalized Hirota equations in models of 2D quantum gravity,” hep-th/9604011 (1996).

  11. M. Mineev-Weinstein, P. B. Wiegmann, and A. Zabrodin, Phys. Rev. Lett., 84, 5106 (2000); I. K. Kostov, I. Krichever, M.Mineev-Weinstein, P. B. Wiegmann, and A. Zabrodin, “τ-function for analytic curves,” in: Random Matrices and Their Applications (MSRI Publs., Vol. 40, P. M. Bleher and A. R. Its, eds.), Cambridge Univ. Press, Cambridge (2001), p. 285; hep-th/0005259 (2000); A. Boyarsky, A. Marshakov, O. Ruchayskiy, P. Wiegmann, and A. Zabrodin, Phys. Lett. B, 515, 483 (2001); I. Krichever, A. Marshakov, and A. Zabrodin, “ Integrable structure of the Dirichlet boundary problem in multiply-connected domains,” hep-th/0309010 (2003).

    Google Scholar 

  12. M. L. Kontsevich, Funct. Anal. Appl., 25, No. 2, 123 (1991).

    Google Scholar 

  13. E. Witten, “On the Kontsevich model and other models of two-dimensional gravity,” in: Proc. 20th Intl. Conf. on Differential Geometric Methods in Theoretical Physics (S. Catt and A. Rocha, eds.), Vol. 1,2, World Scientific, River Edge, N. J. (1992), p. 176; A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 274, 280 (1992).

    Google Scholar 

  14. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin, Nucl. Phys. B, 380, 181 (1992); Phys. Lett. B, 275, 311 (1992).

    Google Scholar 

  15. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Nucl. Phys. B, 397, 339 (1993).

    Google Scholar 

  16. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Modern Phys. Lett. A, 8, 1047 (1993).

    Google Scholar 

  17. L. Chekhov and Yu. Makeenko, Phys. Lett. B, 278, 271 (1992); L. Chekhov, “Matrix models and geometry of moduli spaces,” hep-th/9509001 (1995); S. Kharchev, “Kadomtsev-Petviashvili hierarchy and generalized Kontsevich model,” hep-th/9810091 (1998).

    Google Scholar 

  18. E. P. Wigner, Ann. Math., 53, 36 (1951).

    Google Scholar 

  19. F. J. Dyson, J. Math. Phys., 3, 140 (1962); D. Gross and E. Witten, Phys. Rev. D, 21, 446 (1980); T. Eguchi and H. Kawai, Phys. Rev. Lett., 48, 1063 (1982); D. V. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables (CRM Monograph Series, Vol. 1), Amer. Math. Soc., Providence, R. I. (1992); P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, Phys. Rep., 254, 1 (1995).

    MATH  Google Scholar 

  20. F. David, Nucl. Phys. B, 257, 45 (1985); V. A. Kazakov, I. K. Kostov, and A. A. Migdal, Phys. Lett. B, 157, 295 (1985).

    Article  Google Scholar 

  21. A. Givental, “Semisimple Frobenius structures at higher genus,”math.AG/0008067 (2000).

  22. J. S. Song and Y. S. Song, J. Math. Phys., 45, 4539 (2004); hep-th/0103254 (2001); A. Alexandrov, J. Math. Phys., 44, 5268 (2003).

    Google Scholar 

  23. F. David, Phys. Lett. B, 302, 403 (1993); hep-th/9212106 (1992); G. Bonnet, F. David, and B. Eynard, J. Phys. A, 33, 6739 (2000); cond-mat/0003324 (2000); A. Klemm, M. Mariño, and S. Theisen, JHEP, 0303, 051 (2003).

    Google Scholar 

  24. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products [in Russian], Nauka, Moscow (1971); English transl. 5th ed., Acad. Press, Boston, Mass. (1994).

    Google Scholar 

  25. R. Dijkgraaf and C. Vafa, Nucl. Phys. B, 644,3, 21 (2002); hep-th/0208048 (2002).

    Article  MATH  Google Scholar 

  26. A. A. Migdal, Phys. Rep., 102, 199 (1983); J. Ambjørn, J. Jurkiewicz, and Yu. Makeenko, Phys. Lett. B, 251, 517 (1990).

    Google Scholar 

  27. E. Witten, Nucl. Phys. B, 460, 335 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  28. I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B, 102, 27 (1981); 120, 166 (1983); Phys. Rev. D, 28, 2567 (1983); Nucl. Phys. B, 234, 106 (1984); J. Math. Phys., 26, 172 (1985).

    Google Scholar 

  29. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, N. J. (1992); J. Gomis, J. París, and S. Samuel, Phys. Rep., 259, 1 (1995).

    Google Scholar 

  30. E. S. Fradkin and G. A. Vilkovisky, Phys. Lett. B, 55, 224 (1975); I. A. Batalin and G. A.Vilkovisky, Phys. Lett. B, 69, 309 (1977).

    Google Scholar 

  31. M. Henneaux, Phys. Rep., 126, 1 (1985).

    Google Scholar 

  32. E. Witten, Modern Phys. Lett. A, 5, 487 (1990).

    Google Scholar 

  33. A. S. Schwarz, Comm. Math. Phys., 155, 249 (1993).

    Google Scholar 

  34. J. Polchinski, Nucl. Phys. B, 231, 269 (1984); A. Mironov and A. Morozov, Phys. Lett. B, 490, 173 (2000).

    Google Scholar 

  35. N. Seiberg and E. Witten, Nucl. Phys. B, 426, 19 (1994).

    Google Scholar 

  36. F. David, Modern Phys. Lett. A, 5, 1019 (1990); A. Mironov and A. Morozov, Phys. Lett. B, 252, 47 (1990); J. Ambjτrn and Yu. Makeenko, Modern Phys. Lett. A, 5, 1753 (1990); H. Itoyama and Y. Matsuo, Phys. Lett. B, 255, 202 (1991).

    Google Scholar 

  37. M. Fukuma, H. Kawai, and R. Nakayama, Internat. J. Mod. Phys. A, 6, 1385 (1991); R. Dijkgraaf, H. Verlinde, and E. Verlinde, Nucl. Phys. B, 348, 435 (1991).

    Google Scholar 

  38. Yu. Makeenko, A. Marshakov, A. Mironov, and A. Morozov, Nucl. Phys. B, 356, 574 (1991).

    Google Scholar 

  39. H. Itoyama and A. Morozov, Internat. J. Mod. Phys. A, 18, 5889 (2003); hep-th/0301136 (2003).

    Google Scholar 

  40. J. Harer and D. Zagier, Invent. Math., 85, 457 (1986); S. K. Lando and A. K. Zvonkin, “Embedded graphs,” Preprint No. 63-01, Max-Plank-Institut für Mathematik, Bonn (2001).

    Google Scholar 

  41. C. Itzykson and J.-B. Zuber, Comm. Math. Phys., 134, 197 (1990).

    Google Scholar 

  42. E. Witten, Nucl. Phys. B, 340, 281 (1990); R. Dijkgraaf, H. Verlinde, and E. Verlinde, Nucl. Phys. B, 352, 59 (1991); B. Dubrovin, “Geometry of 2D topological field theories,” in: Integrable Systems and Quantum Groups (Lect. Notes Math., Vol. 1620, M. Francaviglia and S. Greco, eds.), Springer, Berlin (1996), p. 120.

    Article  MathSciNet  Google Scholar 

  43. A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 389, 43 (1996); Modern Phys. Lett. A, 12, 773 (1997); Internat. J. Mod. Phys. A, 15, 1157 (2000).

    Google Scholar 

  44. A. S. Losev, JETP Letters, 65, 386 (1997); K. Ito and S.-K. Yang, Phys. Lett. B, 433, 56 (1998); G. Bertoldi and M. Matone, Phys. Rev. D, 57, 6483 (1998); A. Morozov, Phys. Lett. B, 427, 93 (1998); A. Mironov and A. Morozov, Phys. Lett. B, 424, 48 (1998); H. W. Braden, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 448, 195 (1999); A. Veselov, Phys. Lett. A, 261, 297 (1999); J. M. Isidro, Nucl. Phys. B, 539, 379 (1999); A. Mironov, “WDVV equations and Seiberg-Witten theory,” hep-th/9903088 (1999); A. V. Marshakov, Theor. Math. Phys., 132, 895 (2002).

    Google Scholar 

  45. F. Cachazo, K. Intriligator, and C. Vafa, Nucl. Phys. B, 603, 3 (2001); F. Cachazo and C. Vafa, “N = 1 and N = 2 geometry from fluxes,” hep-th/0206017 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Dorey, T. J. Hollowood, S. Prem Kumar, and A. Sinkovics, JHEP, 0211,039, 040 (2002); 0212, 003 (2002); F. Ferrara, Nucl. Phys. B, 648, 161 (2003); Phys. Rev. D, 67, 085013 (2003); D. Berenstein, Phys. Lett. B, 552, 255 (2003); R. Dijkgraaf, S. Gukov, V. Kazakov, and C. Vafa, Phys. Rev. D, 68, 045007 (2003); A. Gorsky, Phys. Lett. B, 554, 185 (2003); R. Dijkgraaf, M. T. Grisaru, C. S. Lam, C. Vafa, and D. Zanon, Phys. Lett. B, 573, 138 (2003); B. Feng, “Seiberg duality in matrix model,” hep-th/0211202 (2002); B. Feng, Nucl. Phys. B, 661, 113 (2003); hep-th/0212010; F. Cachazo, M. R. Douglas, N. Seiberg, and E. Witten, JHEP, 0212, 071 (2002); F. Cachazo, N. Seiberg, and E. Witten, JHEP, 0302, 042 (2003); 0304, 018 (2003); A. Dymarsky and V. Pestun, Phys. Rev. D, 67, 125001 (2003); R. Boels, Jan de Boer, R. Duivenvoorden, and J. Wijnhout, JHEP, 0403, 010 (2004); hep-th/0305189 (2003).

    Google Scholar 

  47. G. Bonelli, Nucl. Phys. B, 649, 130 (2003); hep-th/0209225 (2002); H. Fujiand Y. Ookouchi, JHEP, 0212, 067 (2002); hep-th/0210148 (2002); R. Argurio, V. L. Campos, G. Ferretti, and R. Heise, Phys. Rev. D, 67, 065005 (2003); hep-th/0210291 (2002); Phys. Lett. B, 553, 332 (2003); hep-th/0211249 (2002); J. McGreevy, JHEP, 0301, 047 (2003); hep-th/0211009 (2002); H. Suzuki, JHEP, 0303, 005, 036 (2003); hep-th/0211052, hep-th/0212121 (2002); I. Bena and R. Roiban, Phys. Lett. B, 555, 117 (2003); hep-th/0211075 (2002); Y. Demasure and R. A. Janik, Phys. Lett. B, 553, 105 (2003); hep-th/0211082 (2002); R. Gopakumar, JHEP, 0305, 033 (2003); hep-th/0211100 (2002); I. Bena, R. Roiban, and R. Tatar, Nucl. Phys. B, 679, 168 (2004); hep-th/0211271 (2002); Y. Tachikawa, Phys. Lett. B, 573, 235 (2003); hep-th/0211189 (2002); Progr. Theor. Phys., 110, 841 (2003); hep-th/0211274 (2002); Y. Ookouchi, JHEP, 0401, 014 (2004); hep-th/0211287 (2002); S. K. Ashok, R. Corrado, N. Halmagyi, K. D. Kennaway, and C. Romelsberger, Phys. Rev. D, 67, 086004 (2003); hep-th/0211291 (2002); K. Ohta, JHEP, 0302, 057 (2003); hep-th/0212025 (2002); R. A. Janik and N. A. Obers, Phys. Lett. B, 553, 309 (2003); hep-th/0212069 (2002); S. Seki, Nucl. Phys. B, 661, 257 (2003); hep-th/0212079 (2002); C. Hofman, JHEP, 0310, 022 (2003); hep-th/0212095 (2002); C. H. Ahn and S. Nam, Phys. Lett. B, 562, 141 (2003); hep-th/0212231 (2002); C. H. Ahn, Phys. Lett. B, 560, 116 (2003); hep-th/0301011 (2003); S. Aoyama and T. Masuda, JHEP, 0403, 072 (2004); hep-th/0309232 (2003).

    Google Scholar 

  48. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466 (1995); E. Martinec and N. Warner, Nucl. Phys. B, 459, 97 (1996); R. Donagi and E. Witten, Nucl. Phys. B, 460, 299 (1996); A. Gorsky, A. Mironov, A. Marshakov, and A. Morozov, Nucl. Phys. B, 527, 690 (1998); H. Itoyama and A. Morozov, Nucl. Phys. B, 477, 855 (1996); 491, 529 (1997); “Integrability and Seiberg-Witten theory,” hep-th/9601168 (1996); E. D’Hoker and D. H. Phong, “Lectures on supersymmetric Yang-Mills theory and integrable systems,” hep-th/9912271 (1999); A. Marshakov, Seiberg-Witten Theory an Integrable Systems, World Scientific, Singapore (1999); H. W. Braden and I. M. Krichever (eds.), Integrability: The Seiberg-Witten an Whitham Equations, Gordon and Breach, Amsterdam (2000); A.Gorsky and A. Mironov, “Integrable many-body systems and gauge theories,” hep-th/0011197 (2000).

    Google Scholar 

  49. L. Chekhov and A. Mironov, Phys. Lett. B, 552, 293 (2003); V. Kazakov and A. Marshakov, J. Phys. A, 36, 3107 (2003).

    Google Scholar 

  50. H. Itoyama and A. Morozov, Nucl. Phys. B, 657, 53 (2003); Phys. Lett. B, 555, 287 (2003).

    Google Scholar 

  51. H. Itoyama and A. Morozov, Progr. Theor. Phys., 109, 433 (2003).

    Google Scholar 

  52. L. Chekhov, A. Marshakov, A. Mironov, and D. Vasiliev, Phys. Lett. B, 562, 323 (2003); A. Mironov, Fortschr. Phys., 51, 781 (2003).

    Google Scholar 

  53. J. Ambjτrn, L. Chekhov, C. F. Kristjansen, and Yu. Makeenko, Nucl. Phys. B, 404, 127 (1993); J. Ambjτrn, L. Chekhov, and Yu. Makeenk, Phys. Lett. B, 282, 341 (1992); G. Akemann, Nucl. Phys. B, 482, 403 (1996).

    Google Scholar 

  54. G.’t Hooft, Nucl. Phys. B, 72, 461 (1974).

    Article  Google Scholar 

  55. G. Veneziano, Nucl. Phys. B, 117, 519 (1976); D. De Wit and G.’t Hooft, Phys. Lett., 69, 61 (1977); E. Witten, “The 1/N expansion in atomic and particle physics,” in: Recent Developments in Gauge Theories (G.’t Hooft et al., eds.), Plenum, New York (1980), p. 403; S. R. Wadia, Phys. Rev. D, 24, 970 (1981); A. Mironov, A.Morozov, and G. Semenoff, Internat. J. Mod. Phys. A, 11, 5031 (1996); B. Eynard, JHEP, 0311, 018 (2003); hep-th/0309036 (2003).

    Google Scholar 

  56. E. Brézin and V. A. Kazakov, Phys. Lett. B, 236, 144 (1990); D. Gross and A. A. Migdal, Phys. Rev. Lett., 64, 127 (1990); Nucl. Phys. B, 340, 333 (1990); M. Douglas and S. Shenker, Nucl. Phys. B, 335, 635 (1990).

    Article  MathSciNet  Google Scholar 

  57. D. Berenstein, J. Maldacena, and H. Nastase, JHEP, 0204, 013 (2002); N. R. Constable, D. Z. Freedman, M. Headrick, and S. Minwalla, JHEP, 0210, 068 (2002); D. J. Gross, A. Mikhailov, and R. Roiban, Ann. Phys., 301, 31 (2002); hep-th/0205066 (2002); JHEP, 0305, 025 (2003); N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenoff, and M. Staudacher, Nucl. Phys. B, 643, 3 (2002); 650, 125 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika,Vol. 142, No. 3, pp. 419–488, March, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A.S., Mironov, A.D. & Morozov, A.Y. Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model. Theor Math Phys 142, 349–411 (2005). https://doi.org/10.1007/s11232-005-0031-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-005-0031-z

Keywords

Navigation