Abstract
This study aimed to enhance our understanding in monogenoid evolution by using morphological and molecular data to determine kinship relationships between species and changes in morphological structures over time. We focused on variations in characteristics among the organisms of the family Gyrodactylidae, concentrating on the phylogenetic position of Polyclithrum with other genera in the family. We collected specimens of Polyclithrum from the striped mullet, Mugil cephalus and Swingleus, and Fundulotrema specimens from mummichog Fundulus heteroclitus in estuarine systems of South Carolina, United States. In addition, we analyzed them and other genera (including e.g., Mormyrogyrodactylus, Gyrodactyloides, and Macrogyrodactylus) using both morphological and molecular (18S rDNA) approaches. We performed phylogenetic trees based on Maximum Parsymony, Maximum Likelihood and Bayesian Inference, and constructed a character morphological matrix by Parsimony Reconstruction of Ancestral Character States method. Our results suggest a homoplastic origin with evolutionary convergences in characters, revealing that there is inconsistency between our data and previously published works based solely on morphological structures of the group. The homoplasy scenario found in Gyrodactylidae can be a result of the limited set of putative homologous morphological features. However, differences between the phylogenies based on morphology and those based on molecular data may arise from both databases. While morphology remains essential in understanding the evolution of this group, molecular data, otherwise, provide a less biased source of information for constructing phylogenetic hypotheses. Combining these data facilitates a better comprehension of the homologous status of morphological features and to understand Gyrodactylidae evolutionary history.
Similar content being viewed by others
References
Arendt, J., & Reznick, D. (2008). Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation? Trends in Ecology & Evolution, 23(1), 26–32. https://doi.org/10.1016/j.tree.2007.09.011
Bergsten, J. (2005). A review of long-branch attraction. Cladistics, 21(2), 163–193. https://doi.org/10.1111/j.1096-0031.2005.00059.x
Boeger, W. A., Kritsky, D. C., Domingues, M. V., & Bueno-Silva, M. (2014). The phylogenetic position of the Loimoidae Price, 1936 (Monogenoidea: Monocotylidea) based on analyses of partial rDNA sequences and morphological data. Parasitology International, 63(3), 492–499. https://doi.org/10.1016/j.parint.2014.01.005
Boeger, W. A., Kritsky, D. C., Patella, L., & Bueno‐Silva, M. (2020). Phylogenetic status and historical origins of the oviparous and viviparous gyrodactylids (Monogenoidea, Gyrodactylidea). Zoologica Scripta, zsc.12455. https://doi.org/10.1111/zsc.12455
Bueno-Silva, M., & Boeger, W. A. (2014). Neotropical Monogenoidea. 58. Three new species of Gyrodactylus (Gyrodactylidae) from Scleromystax spp.(Callichthyidae) and the proposal of COII gene as an additional fragment for barcoding gyrodactylids. Folia Parasitologica, 61(3), 213–222.
Collin, R., & Miglietta, M. P. (2008). Reversing opinions on Dollo’s Law. Trends in Ecology & Evolution, 23(11), 602–609. https://doi.org/10.1016/j.tree.2008.06.013
Cronk, Q. C. B. (2009). Evolution in Reverse Gear: The Molecular Basis of Loss and Reversal. Cold Spring Harbor Symposia on Quantitative Biology, 74, 259–266. https://doi.org/10.1101/sqb.2009.74.034
Cunningham, C. O. (1997). Species variation within the internal transcribed spacer (ITS) region of Gyrodactylus (Monogenea: Gyrodactylidae) ribosomal RNA genes. The Journal of Parasitology, 215–219.
Dávalos, L. M., Cirranello, A. L., Geisler, J. H., & Simmons, N. B. (2012). Understanding phylogenetic incongruence: Lessons from phyllostomid bats. Biological Reviews of the Cambridge Philosophical Society, 87(4), 991–1024. https://doi.org/10.1111/j.1469-185X.2012.00240.x
Ernst, I., Whittington, I. D., & Jones, M. K. (2000). Three new species of Polyclithrum Rogers, 1967 (Gyrodactylidae: Monogenea) from mugilid fishes from Australia and Brazil, with a redescription of P. mugilini Rogers, 1967. Systematic Parasitology, 45(1), 61–73. https://doi.org/10.1023/A:1006285425710
Everson, K. (2015). Simple DNA saturation plots in R. K.m.Everson. Available at http://www.kmeverson.org/1/post/2015/04/simple-dna-saturation-plots-in-r.html
Goloboff, P. A., Carpenter, J. M., Arias, J. S., & Esquivel, D. R. M. (2008). Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics, 24(5), 758–773. https://doi.org/10.1111/j.1096-0031.2008.00209.x
Hall, B. K. (2007). Homology and homoplasy. In M. Matthen & C. Stephens (Eds.), Philosophy of Biology (pp. 429–453). North-Holland. https://doi.org/10.1016/B978-044451543-8/50021-6
Hennig, W. (1966). Phylogenetic Systematics. University of Illinois Press.
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
Humason, G. L. (1962). Animal tissue techniques. W. H. Freeman and Company. https://www.cabdirect.org/cabdirect/abstract/19622204447
Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
Kritsky, D. C., & Boeger, W. A. (2003). Phylogeny of the Gyrodactylidae and the phylogenetic status of Gyrodactylus Nordmann, 1832 (Platyhelminthes: Monogenoidea). Taxonomy, Ecology and Evolution of Metazoan Parasites, 2, 37–58.
Kritsky, D. C., Leiby, P. D., & Kayton, R. J. (1978). A Rapid Stain Technique for the Haptoral Bars of Gyrodactylus Species (Monogenea). The Journal of Parasitology, 64(1), 172. https://doi.org/10.2307/3279642
Littlewood, D. T. J., & Bray, R. A. (2000). Interrelationships of the Platyhelminthes. CRC Press.
Maddison, W., & Maddison, D. (2023). Mesquite: A modular system for evolutionary analysis (3.81) [Computer software]. http://www.mesquiteproject.org
Malmberg, G. (1998). On the evolution within the family Gyrodactylidae (Monogenea). International Journal for Parasitology, 28(10), 1625–1635. https://doi.org/10.1016/S0020-7519(98)00058-7
Masters, J. C. (2007). Taking phylogenetics beyond pattern analysis: Can models of genome dynamics guide predictions about homoplasy in morphological and behavioral data sets? Journal of Human Evolution, 52(5), 522–535. https://doi.org/10.1016/j.jhevol.2006.11.015
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), 1–8. https://doi.org/10.1109/GCE.2010.5676129
Mitsiadis, T. A., Caton, J., & Cobourne, M. (2006). Waking-up the sleeping beauty: Recovery of the ancestral bird odontogenic program. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 306B(3), 227–233. https://doi.org/10.1002/jez.b.21094
Mueller, R. L., Macey, J. R., Jaekel, M., Wake, D. B., & Boore, J. L. (2004). Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proceedings of the National Academy of Sciences, 101(38), 13820–13825. https://doi.org/10.1073/pnas.0405785101
Pamilo, P., & Nei, M. (1988). Relationships between Gene Trees and Species Trees. Molecular Biology and Evolution, 5(5), 568–583. https://doi.org/10.1093/oxfordjournals.molbev.a040517
Philippe, H., Sörhannus, U., Baroin, A., Perasso, R., Gasse, F., & Adoutte, A. (1994). Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. Journal of Evolutionary Biology, 7(2), 247–265. https://doi.org/10.1046/j.1420-9101.1994.7020247.x
Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N., & Delsuc, F. (2005). Heterotachy and long-branch attraction in phylogenetics. BMC Evolutionary Biology, 5(1), 50. https://doi.org/10.1186/1471-2148-5-50
Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., & Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48(1), 369–371. https://doi.org/10.1016/j.ympev.2008.03.024
Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25(7), 1253–1256. https://doi.org/10.1093/molbev/msn083
Přikrylová, I., Barson, M., & Shinn, A. P. (2021). Description of Tresuncinidactylus wilmienae gen. et sp. n. (Monogenea: Gyrodactylidae), from the gills of the bulldog, Marcusenius macrolepidotus (Peters) from Lake Kariba, Zimbabwe. Folia Parasitologica, 68. https://doi.org/10.14411/fp.2021.025
Přikrylová, I., Matějusová, I., Musilová, N., Gelnar, M., & Harris, P. D. (2009). A New Gyrodactylid (Monogenea) Genus on Gray Bichir, Polypterus senegalus (Polypteridae) from Senegal (West Africa). Journal of Parasitology, 95(3), 555–560. https://doi.org/10.1645/GE-1652.1
Přikrylová, I., Vanhove, M. P. M., Janssens, S. B., Billeter, P. A., & Huyse, T. (2013). Tiny worms from a mighty continent: High diversity and new phylogenetic lineages of African monogeneans. Molecular Phylogenetics and Evolution, 67(1), 43–52. https://doi.org/10.1016/j.ympev.2012.12.017
Ragsdale, E. J., & Baldwin, J. G. (2010). Resolving phylogenetic incongruence to articulate homology and phenotypic evolution: A case study from Nematoda. Proceedings of the Royal Society B: Biological Sciences, 277(1686), 1299–1307. https://doi.org/10.1098/rspb.2009.2195
Rogers, W. A. (1969). Swingleus polyclithroides gen. et sp. n. (Monogenea: Gyrodactylidae) from Fundulus grandis Baird and Girard. Tulane Studies in Zoology and Botany, 16(1), 22–25.
Schelkle, B., Paladini, G., Shinn, A., King, S., Johnson, M., Oosterhout, C., Mohammed, R., & Cable, J. (2011). Ieredactylus rivuli gen. Et sp. Nov. (Monogenea, Gyrodactylidae) from Rivulus hartii (Cyprinodontiformes, Rivulidae) in Trinidad. Acta Parasitologica, 56(4). https://doi.org/10.2478/s11686-011-0081-3
Sela, I., Ashkenazy, H., Katoh, K., & Pupko, T. (2015). GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research, 43(W1), W7–W14. https://doi.org/10.1093/nar/gkv318
Skinner, R. (1975). Parasites of the sripped mullet, Mugil cephalus, from Biscayne Nay, Florida, with descriptions of a new genus and three new species of trematodes. Bulletin of Marine Science, 25(3), 318–334.
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Susko, E., & Roger, A. J. (2021). Long branch attraction biases in phylogenetics. Systematic Biology, 70(4), 838–843. https://doi.org/10.1093/sysbio/syab001
Vianna, R. T. (2007). Filogenia e biogeografia histórica dos Gyrodactylidae (Monogenoidea): Morfologia, moléculas e evidência total [Doctoral Dissertation, Graduate Program in Zoology, Universidade Federal do Paraná, Curitiba. Brasil]. Availabe at https://acervodigital.ufpr.br/handle/1884/8834
Vianna, R. T. (2023). Oncoceratium amphidactylum n. gen. n. sp. (Monogenoidea: Gyrodactylidae) from Hoplosternum littorale (Hancock) (Siluriformes, Callichthyidae) from southeastern Brazil. Systematic Parasitology, 100, 455-471. https://doi.org/10.1007/s11230-023-10097-1
Vianna, R. T., Boeger, W. A., & Dove, A. D. M. (2007). Neotropical Monogenoidea. 51. Scutalatus magniancoratus gen. et sp. n. (Gyrodactylidae) from the South-American electric eel, Electrophorus electricus (Gymnotidae, Gymnotiformes), and redescription of Mormyrogyrodactylus gemini from the African bulldog, Marcusenius macrolepidkotus (Mormyridae, Osteoglossiformes). Acta Zoologica, 88(2), 89–94. https://doi.org/10.1111/j.1463-6395.2007.00255.x
Wake, D. B. (1991). Homoplasy: The Result of Natural Selection, or Evidence of Design Limitations? The American Naturalist, 138(3), 543–567. https://doi.org/10.1086/285234
Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: The theory of phylogenetic systematics (2. ed). Wiley-Blackwell.
Acknowledgments
Thanks to Erin Levesque (Waddell Mariculture Center, SCDNR), to the staff of the Inshore Division (SC DNR), and to Dr. M. Kimball (Belle W. Baruch Institute for Marine and Coastal Science, University of South Carolina) for providing fish.
Funding
This study was financially supported in part by the College of Charleston, USA, and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. JRMC was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). WAB is a researcher associated to CNPq.
Author information
Authors and Affiliations
Contributions
JRMC, ELR and WAB designed the research; IDB and WAB collected the material; JRMC and ELR prepared the genetic data; JRMC and WAB performed the analysis; JRMC and WAB participated in improvement of research and manuscript writing; JRMC, WAB, ELR and IDB reviews the manuscript. All authors contributed to the article and approved the submitted version.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interest.
Ethical approval
All applicable institutional, national and international guidelines for the care and use of animals were followed.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ciccheto, J.R.M., Razzolini, E.L., de Buron, I. et al. Position of Polyclithrum within Gyrodactylidae (Monogenoidea): incongruences between morphological and molecular phylogenies. Syst Parasitol 100, 633–645 (2023). https://doi.org/10.1007/s11230-023-10113-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11230-023-10113-4