Systematic Parasitology

, Volume 96, Issue 3, pp 265–278 | Cite as

Four new monorchiids from the golden trevally, Gnathanodon speciosus (Forsskål) (Perciformes: Carangidae), in Moreton Bay, Australia

  • Nicholas Q.-X. WeeEmail author
  • Scott C. Cutmore
  • Thomas H. Cribb


Four new monorchiid trematodes are reported from Moreton Bay, Australia; three new species of Provitellus Dove & Cribb, 1998 and one species of Ovipusillus Dove & Cribb, 1998, are described from Gnathanodon speciosus (Forsskål) (Carangidae), the golden trevally. Provitellus chaometra n. sp., Provitellus infrequens n. sp. and Provitellus infibrova n. sp. differ significantly from the only other species of this genus, Provitellus turrum Dove & Cribb, 1998, in the structure of the eggs, vitelline follicles and terminal organ. The four species are united, however, in the possession of short caeca and a long genital atrium, a combination not reported previously. Ovipusillus geminus n. sp. strongly resembles its only congener, Ovipusillus mayu Dove & Cribb, 1998, but differs in the morphology of the diverticulum in the cirrus-sac and the shape of the pharynx. Complete ITS2 and partial 28S rDNA sequence data were generated for all four species, as well as for two known species of Hurleytrematoides Yamaguti, 1953, Hurleytrematoides galzini McNamara & Cribb, 2011 and Hurleytrematoides loi McNamara & Cribb, 2011. These sequences were analysed with those for other monorchiids available on GenBank, and phylogenetic analyses showed that the four species of Provitellus and two species of Ovipusillus each form strongly supported clades. As with previous monorchiid phylogenetic studies, however, the overall resolution of the phylogeny of the Monorchiidae is poor.



We sincerely thank John Page, Dave Thompson, and all members of the Marine Parasitology Laboratory for their assistance with the collection of fish in Moreton Bay and the staff of the Moreton Bay Research Station and Heron Island Research Station for their support of our work.


THC and SCC acknowledge the Australian Biological Resources Study (ABRS) for its support. This work was supported by an ABRS grant to explore the parasites of fishes of Moreton Bay (RF215-40). This project was also supported by the PADI Foundation through funds awarded to NW. NW is supported by a PhD scholarship from the University of Queensland (Research Training Program (RTP) Scholarship).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted in compliance with all institutional, national and international guidelines on the care and use of animals.


  1. Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J., & Förster, F. (2015). ITS2 Database V: Twice as much. Molecular Biology and Evolution, 32, 3030–3032.CrossRefGoogle Scholar
  2. Atopkin, D. M., Besprozvannykh, V. V., Ngo, H. D., Van Ha, N., Van Tang, N., Ermolenko, A. V., et al. (2017). Morphometric and molecular data of the two digenean species Lasiotocus lizae Liu, 2002 (Monorchiidae) and Paucivitellosus vietnamensis sp. n. (Bivesiculidae) from mullet fish in Tonkin Bay. Vietnam. Journal of Helminthology, 91, 346–355.CrossRefGoogle Scholar
  3. Besprozvannykh, V. V., Ermolenko, A. V., & Atopkin, D. M. (2012). The life cycle of Asymphylodora percotti sp. n. (Trematoda: Lissorchiidae) in the Russian Southern Far East. Parasitology International, 61, 235–241.CrossRefGoogle Scholar
  4. Bijukumar, A. (1997). Digenetic trematode parasites of the flatfishes (Pleuronectiformes) of the Kerala coast, India. Acta Parasitologica, 42, 149–157.Google Scholar
  5. Bray, R. A., Cribb, T. H., & Cutmore, S. C. (2018a). Lepocreadiidae Odhner, 1905 and Aephnidiogenidae Yamaguti, 1934 (Digenea: Lepocreadioidea) of fishes from Moreton Bay, Queensland, Australia, with the erection of a new family and genus. Systematic Parasitology, 95, 479–498.CrossRefGoogle Scholar
  6. Bray, R. A., Cutmore, S. C., & Cribb, T. H. (2018b). Lepotrema Ozaki, 1932 (Lepocreadiidae: Digenea) from Indo-Pacific fishes, with the description of eight new species, characterised by morphometric and molecular features. Systematic Parasitology, 95, 693–741.CrossRefGoogle Scholar
  7. Cribb, T. H., Anderson, G. R., Adlard, R. D., & Bray, R. A. (1998). A DNA-based demonstration of a three-host life-cycle for the Bivesiculidae (Playtyhelminthes: Digenea). International Journal for Parasitology, 28, 1791–1795.CrossRefGoogle Scholar
  8. Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7.CrossRefGoogle Scholar
  9. Cribb, T. H., Wee, N. Q.-X., Bray, R. A., & Cutmore, S. C. (2018). Monorchis lewisi n. sp. (Trematoda: Monorchiidae) from the surf bream, Acanthopagrus australis (Sparidae), in Moreton Bay, Australia. Journal of Helminthology, 92, 100–108.CrossRefGoogle Scholar
  10. Curran, S. S., Tkach, V. V., & Overstreet, R. M. (2006). A review of Polylekithum Arnold, 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica, 51, 238–248.CrossRefGoogle Scholar
  11. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefGoogle Scholar
  12. Dove, A. D. M., & Cribb, T. H. (1998). Two new genera, Provitellus and Ovipusillus, and four new species of Monorchiidae (Digenea) from carangid fishes of Queensland, Australia. Systematic Parasitology, 48, 21–33.CrossRefGoogle Scholar
  13. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefGoogle Scholar
  14. ICZN (2012). International Commission on Zoological Nomenclature: Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bulletin of Zoological Nomenclature, 69, 161–169.Google Scholar
  15. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.CrossRefGoogle Scholar
  16. Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T., & Wolf, M. (2009). 5.8S-28SrRNA interaction andHMM-based ITS2 annotation. Gene, 430, 50–57.CrossRefGoogle Scholar
  17. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.CrossRefGoogle Scholar
  18. Littlewood, D. T. J., Curini-Galletti, M., & Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution, 16, 449–466.CrossRefGoogle Scholar
  19. Littlewood, D. T. J., Rohde, K., & Clough, K. A. (1997). Parasite speciation within or between host species? - phylogenetic evidence from site-specific polystome monogeneans. Parasitology, 27, 1289–1297.Google Scholar
  20. Lockyer, A., Olson, P. D., & Littlewood, D. T. J. (2003). Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biological Journal of the Linnean Society, 78, 155–171.CrossRefGoogle Scholar
  21. Maddison, W. P., & Maddison, D. R. (2017). Mesquite: a modular system for evolutionary analysis. Version, 3, 2.Google Scholar
  22. Madhavi, R. (2008). Family Monorchiidae Odhner, 1911. In: Bray, R. A., Gibson, D. I. & Jones, A. (Eds) Keys to the Trematoda, Volume 3. Wallingford-London: CAB International and Natural History Museum, pp. 145–175.CrossRefGoogle Scholar
  23. McNamara, M. K. A., & Cribb, T. H. (2011). Taxonomy, host specificity and dietary implications of Hurleytrematoides (Digenea: Monorchiidae) from chaetodontid fishes on the Great Barrier Reef. Parasitology International, 60, 255–269.CrossRefGoogle Scholar
  24. Morgan, J. A., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationshops within the 37-collar-spine group. Parasitology, 111, 609–615.CrossRefGoogle Scholar
  25. Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755.CrossRefGoogle Scholar
  26. Parukhin, A. M. (1976). Parasitic worms of food fishes of the southern seas. Kiev: Naukova Dumka (In Russian).Google Scholar
  27. Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., et al. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetcis and Evolution, 48, 369–371.CrossRefGoogle Scholar
  28. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. I., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefGoogle Scholar
  29. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  30. Saoud, M. F. A., Ramadan, M. M., & Al Kawari, K. S. R. (1986). Helminth parasites of fishes from the Arabian Gulf 1. Preliminary general survey of fishes mainly from Qatari waters. Qatar University Science Bulletin, 6, 199–229.Google Scholar
  31. Searle, E. L., Cutmore, S. C., & Cribb, T. H. (2014). Monorchiid trematodes of the painted sweetlips, Diagramma labiosum (Perciformes: Haemulidae), from the southern Great Barrier Reef, including a new genus and three new species. Systematic Parasitology, 88, 195–211.CrossRefGoogle Scholar
  32. Sey, O., Al-Ghaith, L., & Nahhas, F. M. (1998). Scanning electron microscopy study of a copulating monorchiid (Trematoda: Digenea). Journal of the Helminthological Society of Washington, 65, 243–245.Google Scholar
  33. Snyder, S. D., & Tkach, V. V. (2001). Phylogenetic and biogeographical relationships among some Holarctic frog lung flukes (Digenea: Haematoloechidae). Journal of Parasitology, 87, 1433–1440.CrossRefGoogle Scholar
  34. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefGoogle Scholar
  35. Tkach, V. V., Pawlowskibc, J., Mariauxc, J., & Swiderski, Z. (2001). Molecular phylogeny of the suborder Plagiorchiata and its position in the system of Digenea. In: Littlewood, D. T. J. & Bray, R. A. (Eds) Interrelationships of Platyhelminthes. London: Taylor & Francis, pp. 186–193.Google Scholar
  36. Wee, N. Q.-X., Cutmore, S. C., & Cribb, T. H. (2018). Two monorchiid species from the freckled goatfish, Upeneus tragula (Perciformes: Mullidae), in Moreton Bay, Australia, including a proposal of a new genus. Systematic Parasitology, 95, 353–365.CrossRefGoogle Scholar
  37. Wee, N. Q.-X., Cutmore, S. C., Yong, R. Q.-Y., & Cribb, T. H. (2017). Two new and one known species of Tergestia Stossich, 1899 (Trematoda: Fellodistomidae) with novel molecular characterisation for the genus. Systematic Biology, 94, 861–874.Google Scholar
  38. Yamaguti, S. (1952). Parasitic worms mainly from Celebes. Part 1. New digenetic trematodes of fishes. Acta Medicinae Okayama, 8, 146–198.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of QueenslandSt LuciaAustralia

Personalised recommendations