Advertisement

Systematic Parasitology

, Volume 95, Issue 4, pp 325–336 | Cite as

Two species of Phyllodistomum Braun, 1899 (Trematoda: Gorgoderidae) from Moreton Bay, Australia

  • Scott C. Cutmore
  • Thomas H. Cribb
Article
Part of the following topical collections:
  1. Digenea

Abstract

Two species of the trematode genus Phyllodistomum Braun, 1899 (Gorgoderidae) are reported infecting teleost fishes from Moreton Bay, Queensland, Australia. Phyllodistomum hyporhamphi n. sp. is described from two species of garfishes (Hemiramphidae), Hyporhamphus regularis ardelio (Whitley) and H. australis (Steindachner). The new species differs from other marine species of Phyllodistomum in possessing a forebody length less than half that of the body, a body length to width ratio < 4:1, an oral sucker width to ventral sucker width ratio > 1:1 and < 2:1, 7–9 strong, marginal undulations on each side of the body and large, slightly lobed vitelline masses. Phyllodistomum pacificum Yamaguti, 1951 is reported, for the first time in Australian waters, from Pantolabus radiatus (MacLeay) (Carangidae). The new material agrees closely with the original description of P. pacificum, in Carangoides equula (Temminck & Schlegel) off Hamazima, Mie Prefecture, Japan, although the specimens from Moreton Bay are larger than those of the original description (4,575–5,338 × 1,111–1,328 vs 2,200–3,100 × 570–930 μm). Cetiotrema carangis (Manter, 1947) Manter, 1970 is found to be a synonym of Cetiotrema carangis (MacCallum, 1913) Williams & Bunkley-Williams, 1996 and the species is formally moved to Phyllodistomum as P. carangis (MacCallum, 1913) n. comb. Phylogenetic analyses of 28S rDNA data showed that the six marine species of Phyllodistomum for which molecular data are available form a strongly-supported clade.

Notes

Acknowledgements

We thank John Page and Dave Thompson for their assistance in the collection of fishes in Moreton Bay, and Dan Huston for assistance with dissections.

Funding

THC and SCC acknowledge the Australian Biological Resources Study (ABRS) for their ongoing support. This study was funded by the ABRS National Taxonomy Research Grant RF215-40.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

References

  1. Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J., & Förster, F. (2015). ITS2 Database V: Twice as much. Molecular Biology and Evolution, 32, 3030–3032.Google Scholar
  2. Blasco-Costa, I., Cutmore, S. C., Miller, T. L., & Nolan, M. J. (2016). Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Systematic Parasitology, 93, 295–306.Google Scholar
  3. Bravo-Hollis, M., & Manter, H. W. (1957). Trematodes of marine fishes of Mexican waters. X. Thirteen Digenea including nine new species and two new genera from Pacific coast. Proceedings of the Helminthological Society of Washington, 24, 35–48.Google Scholar
  4. Campbell, R. A. (2008). Family Gorgoderidae Looss, 1899. In: Bray, R. A., Gibson, D. I. & Jones, A. (Eds) Keys to the Trematoda, Volume 3. Wallingford: CAB International, pp. 191–213.Google Scholar
  5. Cribb, T. H., Anderson, G. R., Adlard, R. D., & Bray, R. A. (1998). A DNA-based demonstration of a three-host life-cycle for the Bivesiculidae (Platyhelminthes: Digenea). International Journal for Parasitology, 28, 1791–1795.Google Scholar
  6. Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7.Google Scholar
  7. Curran, S. S., Tkach, V. V., & Overstreet, R. M. (2006). A review of Polylekithum Arnold, 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica, 51, 238–248.Google Scholar
  8. Cutmore, S. C., Bennett, M. B., & Cribb, T. H. (2010). Staphylorchis cymatodes (Gorgoderidae: Anaporrhutinae) from carcharhiniform, orectolobiform and myliobatiform elasmobranchs of Australasia: Low host specificity, wide distribution and morphological plasticity. Parasitology International, 59, 579–586.Google Scholar
  9. Cutmore, S. C., Diggles, B. K., & Cribb, T. H. (2016). Transversotrema Witenberg, 1944 (Trematoda: Transversotrematidae) from inshore fishes of Australia: description of a new species and significant range extensions for three congeners. Systematic Parasitology, 93, 639–652.Google Scholar
  10. Cutmore, S. C., Miller, T. L., Curran, S. S., Bennett, M. B., & Cribb, T. H. (2013). Phylogenetic relationships of the Gorgoderidae (Platyhelminthes: Trematoda), including the proposal of a new subfamily (Degeneriinae n. subfam.). Parasitology Research, 112, 3063–3074.Google Scholar
  11. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.Google Scholar
  12. Diaz, P. E., Bray, R. A., Cutmore, S. C., Ward, S., & Cribb, T. H. (2015). A complex of species related to Paradiscogaster glebulae (Digenea: Faustulidae) in chaetodontid fishes (Teleostei: Perciformes) of the Great Barrier Reef. Parasitology International, 64, 421–428.Google Scholar
  13. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.Google Scholar
  14. Ho, H. W., Bray, R. A., Cutmore, S. C., Ward, S., & Cribb, T. H. (2014). Two new species of Phyllodistomum Braun, 1899 (Trematoda: Gorgoderidae Looss, 1899) from Great Barrier Reef fishes. Zootaxa, 3779, 551–562.Google Scholar
  15. ICZN (2012). International Commission on Zoological Nomenclature: Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bulletin of Zoological Nomenclature, 69, 161–169.Google Scholar
  16. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.Google Scholar
  17. Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T., & Wolf, M. (2009). 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene, 430, 50–57.Google Scholar
  18. Littlewood, D. T. J. (1994). Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Molecular Phylogenetics and Evolution, 3, 221–229.Google Scholar
  19. Littlewood, D. T. J., Curini-Galletti, M., & Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution, 16, 449–466.Google Scholar
  20. Littlewood, D. T. J., Rohde, K., & Clough, K. A. (1997). Parasite speciation within or between host species? - Phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology, 27, 1289–1297.Google Scholar
  21. MacCallum, G. A. (1913). Notes on four trematodes parasites of marine fishes. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, 70, 407–416.Google Scholar
  22. Maddison, W. P., & Maddison, D. R. (2017). Mesquite: a modular system for evolutionary analysis. Version 3.01 http://mesquiteproject.org.
  23. Manter, H. W. (1947). The digenetic trematodes of marine fishes of Tortugas, Florida. American Midland Naturalist, 38, 257–416.Google Scholar
  24. Manter, H. W. (1970). A new genus of trematode (Digenea; Gorgoderidae) from the ureter of tuna fish (Thunnus thynnus maccoyii) in Australia. Transactions of the Royal Society of South Australia, 94, 147–150.Google Scholar
  25. Martin, S. B., Cutmore, S. C., & Cribb, T. H. (2017). Revision of Neolebouria Gibson, 1976 (Digenea: Opecoelidae), with Trilobovarium n. g., for species infecting tropical and subtropical shallow-water fishes. Systematic Parasitology, 94, 307–338.Google Scholar
  26. Martin, S. B., Cutmore, S. C., & Cribb, T. H. (2018). Revision of Podocotyloides Yamaguti, 1934 (Digenea: Opecoelidae), resurrection of Pedunculacetabulum Yamaguti, 1934, and the naming of a cryptic opecoelid species. Systematic Parasitology, 95, 1–31.Google Scholar
  27. Miller, M. A., Pfeiler, E., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp. 1–8.Google Scholar
  28. Morgan, J. A., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: An aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615.Google Scholar
  29. Nolan, M. J., Curran, S. S., Miller, T. L., Cutmore, S. C., Cantacessi, C., & Cribb, T. H. (2015). Dollfustrema durum n. sp. and Heterobucephalopsis perardua n. sp. (Digenea: Bucephalidae) from the giant moray eel, Gymnothorax javanicus (Bleeker) (Anguilliformes: Muraenidae), and proposal of the Heterobucephalopsinae n. subfam. Parasitology International, 64, 559–570.Google Scholar
  30. Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755.Google Scholar
  31. Parukhin, A. M. (1976). [Parasitic Worms of Food Fishes in the Southern Seas]. Kiev, USSR: Naukova Dumka, 184 pp (In Russian).Google Scholar
  32. Pérez-Ponce de León, G., Pinacho-Pinacho, C. D., Mendoza-Garfias, M., & García-Varela, M. (2015). Phyllodistomum spinopapillatum sp. nov. (Digenea: Gorgoderidae), from the Oaxaca killifish Profundulus balsanus (Osteichthyes: Profundulidae) in Mexico, with new host and locality records of P. inecoli: Morphology, ultrastructure and molecular evidence. Acta Parasitologica, 60, 298–307.Google Scholar
  33. Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., et al. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371.Google Scholar
  34. Razo-Mendivil, U., Pérez Ponce de León, G., & Rubio-Godoy, M. (2013). Integrative taxonomy identifies a new species of Phyllodistomum (Digenea: Gorgoderidae) from the twospot livebearer, Heterandria bimaculata (Teleostei: Poeciliidae), in Central Veracruz, Mexico. Parasitology Research, 112, 4137–4150.Google Scholar
  35. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Google Scholar
  36. Snyder, S. D., & Tkach, V. V. (2001). Phylogenetic and biogeographical relationships among some Holarctic frog lung flukes (Digenea: Haematoloechidae). Journal of Parasitology, 87, 1433–1440.Google Scholar
  37. Stamatakis, A. (2014). RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.Google Scholar
  38. Sun, D., Bray, R. A., Yong, R. Q-Y., Cutmore, S. C., & Cribb, T. H. (2014). Pseudobacciger cheneyae n. sp. (Digenea: Gymnophalloidea) from Weber’s chromis (Chromis weberi Fowler & Bean) (Perciformes: Pomacentridae) at Lizard Island, Great Barrier Reef, Australia. Systematic Parasitology, 88, 141–152.Google Scholar
  39. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.Google Scholar
  40. Urabe, M., Ishibashi, R., & Uehara, K. (2015). The life cycle and molecular phylogeny of a gorgoderid trematode recorded from the mussel Nodularia douglasiae in the Yodo River, Japan. Parasitology International, 64, 26–32.Google Scholar
  41. Violante-González, J., Gallegos-Navarro, Y., Monks, S., García-Ibáñez, S., Rojas-Herrera, A. A., Pulido-Flores, G., et al. (2016). Parasites of the green jack Caranx caballus (Pisces: Carangidae) in three locations from Pacific coasts of Mexico, and their utility as biological tags. Revista Mexicana de Biodiversidad, 87, 1015–1022.Google Scholar
  42. Wee, N. Q-X., Cribb, T. H., Bray, R. A., & Cutmore, S. C. (2017). Two known and one new species of Proctoeces from Australian teleosts: Variable host-specificity for closely related species identified through multi-locus molecular data. Parasitology International, 66, 16–26.Google Scholar
  43. Williams, E. H., & Bunkley-Williams, L. (1996). Parasites of Offshore Big Game Fishes of Puerto Rico and the Western Atlantic. San Juan: Department of Biology, University of Puerto Rico, 384 pp.Google Scholar
  44. Winter, H. A. (1958). Trematodos de peces marinos de aquas Mexicanas. XIII. Cuatro digeneos de peces del Oceano Pacifico dos de ellos nuevas especies de la familia Cryptogonomidae Ciurea, 1933. Anales del Instituto de Biología. Universidad de México, 28, 175–194.Google Scholar
  45. Yamaguti, S. (1951). Studies on the helminth fauna of Japan. Part 44. Trematodes of fishes, IX. Arbeiten aus der Medizinischen Fakultät zu Okayama, 7, 247–282.Google Scholar
  46. Yamaguti, S. (1971). Synopsis of Digenetic Trematodes of Vertebrates, Volume 1. Tokyo: Keigaku Publishing Company, 1042 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of QueenslandSt Lucia, QueenslandAustralia

Personalised recommendations