Systematic Parasitology

, Volume 94, Issue 1, pp 1–20 | Cite as

Morphology and molecules reveal the alien Posthodiplostomum centrarchi Hoffman, 1958 as the third species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) in Europe

  • Borislav Stoyanov
  • Simona Georgieva
  • Plamen Pankov
  • Olena Kudlai
  • Aneta Kostadinova
  • Boyko B. Georgiev
Article

Abstract

Metacercariae of two species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) were subjected to morphological and molecular studies: P. brevicaudatum (von Nordmann, 1832) from Gasterosteus aculeatus (L.) (Gasterosteiformes: Gasterosteidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Perca fluviatilis L. (Perciformes: Percidae), Czech Republic (morphology, cox1, ITS1-5.8S-ITS2 and 28S); and P. centrarchi Hoffman, 1958 from Lepomis gibbosus (L.) (Perciformes: Centrarchidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Slovakia (cox1 and ITS1-5.8S-ITS2). In addition, cercariae of P. cuticola (von Nordmann, 1832) from Planorbis planorbis (L.) (Mollusca: Planorbidae), Lithuania (morphology and cox1) and metacercariae of Ornithodiplostomum scardinii (Schulman in Dubinin, 1952) from Scardinius erythrophthalmus (L.) (Cypriniformes: Cyprinidae), Czech Republic, were examined (morphology, cox1, ITS1-5.8S-ITS2 and 28S). These represent the first molecular data for species of Posthodiplostomum and Ornithodiplostomum Dubois, 1936 from the Palaearctic. Phylogenetic analyses based on cox1 and ITS1-5.8S-ITS2, using O. scardinii as the outgroup and including the three newly-sequenced Posthodiplostomum spp. from Europe and eight published unidentified (presumably species-level) lineages of Posthodiplostomum from Canada confirmed the distinct status of the three European species (contrary to the generally accepted opinion that only P. brevicaudatum and P. cuticola occur in the Palaearctic). The subspecies Posthodiplostomum minimum centrarchi Hoffmann, 1958, originally described from North America, is elevated to the species level as Posthodiplostomum centrarchi Hoffman, 1958. The undescribed “Posthodiplostomum sp. 3” of Locke et al. (2010) from centrarchid fishes in Canada has identical sequences with the European isolates of P. centrarchi and is recognised as belonging to the same species. The latter parasite, occurring in the alien pumpkinseed sunfish Lepomis gibbosus in Europe, is also supposed to be alien for this continent. It is speculated that it colonised Europe long ago and is currently widespread (recorded in Bulgaria, Slovakia and Spain); based on the cox1 sequence of an adult digenean isolate from the Ebro Delta, Spain, only the grey heron (Ardea cinerea L.) (Ciconiiformes: Ardeidae) is known to be its definitive host in Europe.

References

  1. Bray, R. A., Waeschenbach, A., Cribb, T. H., Weedall, G. D., Dyal, P., & Littlewood, D. T. J. (2009). The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitologica, 54, 310–329.Google Scholar
  2. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Davis, S. R., & Miller, G. C. (1989). Parasites of some fishes from B. Everett Jordan Reservoir, North Carolina. Journal of the Elisha Mitchell Scientific Society, 105, 97–114.Google Scholar
  4. Dönges, J. (1964). Der Lebenszyklus von Posthodiplostomum cuticola (v. Nordmann, 1832) Dubois, 1936 (Trematoda, Diplostomatidae). Zeitschrift für Parasitenkunde, 24, 169–248.Google Scholar
  5. Dönges, J. (1965). Der Lebenszyklus von Posthodiplostomum brevicaudatum (Trematoda), eines Parasiten in den Augen von Süßwasserfischen. Zoologica, 114, 1–39.Google Scholar
  6. Dronen, N. O., & Chen, H.-W. (2002). Endohelminths from the little blue heron Egretta caerulea from the Texas Gulf Coast. Comparative Parasitology, 69, 96–99.CrossRefGoogle Scholar
  7. Dubois, G. (1938). Monographie des Strigeida (Trematoda). Mémoires de la Société Neuchâteloise des Sciences Naturelles, 6, 1–535.Google Scholar
  8. Dubois, G. (1970). Synopsis des Strigeidae et des Diplostomatidae (Trematoda). Mémoires de la Société Neuchâteloise des Sciences Naturelles, 10, 1–727.Google Scholar
  9. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Galazzo, D. E., Dayanandan, S., Marcogliese, D. J., & McLaughlin, J. D. (2002). Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Canadian Journal of Zoology, 80, 2207–2217.CrossRefGoogle Scholar
  11. Georgieva, S., Selbach, C., Faltýnková, A., Soldánová, M., Sures, B., Skírnisson, K., & Kostadinova, A. (2013). New cryptic species of the “revolutum” group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasites & Vectors, 6, 64.CrossRefGoogle Scholar
  12. Georgieva, S., Faltýnková, A., Brown, R., Blasco-Costa, I., Soldánová, M., Sitko, J., Scholz, T., & Kostadinova, A. (2014). Echinostomarevolutum” (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasites & Vectors, 7, 520.Google Scholar
  13. Gibson, D. I. (1996). Trematoda. In: Margolis, L. & Kabata, Z. (Eds). Guide to the parasites of fishes of Canada. Part IV. Canadian Special Publication of Fisheries and Aquatic Sciences, 124, 363 pp.Google Scholar
  14. Grabda-Kazubska, B., Baturo-Warszawska, B., & Pojmańska, T. (1987). Dynamics of parasite infestation of fish in lakes Dgał Wielki and Warniak in connection with introduction of phytophagous species. Acta Parasitologica Polonica, 32, 1–28.Google Scholar
  15. Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696–704.CrossRefPubMedGoogle Scholar
  16. Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.CrossRefPubMedGoogle Scholar
  17. Hoffman, G. L. (1958). Experimental studies on the cercaria and metacercaria of a strigeoid trematode, Posthodiplostomum minimum. Experimental Parasitology, 7, 23–50.CrossRefPubMedGoogle Scholar
  18. Hoffman, G. L. (1998). Parasites of North American freshwater fishes. Second Edition. Ithaca & London: Cornell University Press, 539 pp.Google Scholar
  19. Hughes, R. C. (1928). Studies on the trematode family Strigeidae (Holostomidae). No. IX. Neascus van-cleavei (Agersborg). Transactions of the American Microscopical Society, 47, 320–341.CrossRefGoogle Scholar
  20. Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307.CrossRefGoogle Scholar
  21. Jančev, J., Vassilev, I., Isskova, N., & Genov, T. (1984). A contribution to the trematode fauna of the wild birds in Bulgaria. In: Vassilev, I. (Ed.) [Fauna, taksonomiya i ekologiya na khelminti po ptitisi.] Sofia: Publishing House of the Bulgarian Academy of Sciences, pp. 188–205 (In Bulgarian).Google Scholar
  22. Kostadinova, A. (1993). [Trematodes and trematode communities of the fish-eating birds from the Bulgarian Black Sea coast.] PhD Thesis, Sofia: Institute of Parasitology, Bulgarian Academy of Sciences, 227 pp (In Bulgarian).Google Scholar
  23. Kostadinova, A. (1995). Trematodes of birds of the family Ardeidae from the Bulgarian Black Sea coast. Comptes Rendus de l’Académie Bulgare des Sciences, 48, 89–91.Google Scholar
  24. Kottelat, M., & Freyhof, J. (2007). Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany, 646 pp.Google Scholar
  25. Lane, B., Spier, T., Wiederholt, J., & Meagher, S. (2015). Host specificity of a parasitic fluke: Is Posthodiplostomum minimum a centrarchid-infecting generalist or specialist? Journal of Parasitology, 101, 6–17.CrossRefPubMedGoogle Scholar
  26. Locke, S. A., McLaughlin, J. D., & Marcogliese, D. J. (2010). DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Molecular Ecology, 19, 2813–2827.CrossRefPubMedGoogle Scholar
  27. Luton, K., Walker, D., & Blair, D. (1992). Comparison of ribosomal internal transcribed spacers from two congeneric species of flukes (Platyhelminthes: Trematoda: Digenea). Molecular and Biochemical Parasitology, 56, 323–328.CrossRefPubMedGoogle Scholar
  28. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp. 1–8.Google Scholar
  29. Moszczynska, A., Locke, S. A., McLaughlin, J. D., Marcogliese, D. J., & Crease, T. J. (2009). Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resources, 9, 75–82.CrossRefPubMedGoogle Scholar
  30. Niewiadomska, K. (2002). Superfamily Diplostomoidea Poirier, 1886. In Gibson, D. I., Jones, A. & Bray, R. A. (Eds.), Keys to the Trematoda, Vol. 1. Wallingford - London, UK: CABI Publishing and The Natural History Museum, pp. 159–242.Google Scholar
  31. Niewiadomska, K. (2003). Monografie Parazytologiczne. 15. Pasozyty ryb Polski (klucze do oznaczania): Przywry - Digenea. Warszawa: Polskie Towarzystwo Parazytologiczne, 169 pp.Google Scholar
  32. Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., & Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371.CrossRefPubMedGoogle Scholar
  33. Pugachev, O.N. (2003). Trematoda. In: Alimov, A. F. (Ed.) Checklist of the freshwater fish parasites of the Northern Asia. Trudy Zoologichekogo Instituta Rossiyskoy Akademii Nauk, 298, pp. 1–224 (In Russian).Google Scholar
  34. Rambaut, A. (2012). FigTree v. 1.4. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology, http://tree.bio.ed.ac.uk/software/figtree/.
  35. Rambaut, A., & Drummond, A. J. (2009). Tracer 1.5. Available from http://beast.bio.ed.ac.uk/Tracer.
  36. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L, Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sudarikov, V. E. (1971). Order Strigeidida (La Rue, 1926) Sudarikov, 1959, Suborder Strigeata La Rue, 1926. In: Skrjabin, K. I. (Ed.). [Trematodes of animals and man.] Osnovy Trematodologii, 24. Moscow: Nauka, pp. 69–227 (In Russian).Google Scholar
  38. Sudarikov, V. E., Shigin, A. A., Kurochkin, Yu. V., Lomakin, V. V., Sten’ko, R. P., & Yurlova, N. I. (2002). [Metacercariae of trematodes parasitic in freshwater hydrobionts of central Russia.] In: Freze, V. I. (Ed.), [Trematode metacercariae parasitic in hydrobionts of Russia, Vol. 1.] Moscow: Nauka, 296 pp (In Russian).Google Scholar
  39. Sugiura, N. (1978). Further analysis of the data by Akaike’s information criterion and the finite corrections. Communication in Statistics Theory and Methods, A, 7, 13–26.CrossRefGoogle Scholar
  40. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Telford, M. J., Herniou, E. A., Russell, R. B., & Littlewood, D. T. J. (2000). Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proceedings of the National Academy of Sciences USA, 97, 11359–11364.CrossRefGoogle Scholar
  42. Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M., & Swiderski, Z. (2003). Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology, 56, 1–15.CrossRefPubMedGoogle Scholar
  43. Vassilev, V., Vassilev, R., Yankov, P., Kamburova, N., Uzunov, Y., Pehlivanov, L., Georgiev, B. B., Popgeorgiev, G., Assyov, B., Avramov, S., Tzenova, R., & Kornilev, Y. (2013). National action plan for conservation of wetlands of high significance in Bulgaria, 20132022. Sofia: Bulgarian Biodiversity Foundation, 104 pp.Google Scholar
  44. Wisniewski, W. L. (1958). The development cycle of Posthodiplostomum brevicaudatum (v. Nordmann, 1832) Kozicka, 1958. Acta Parasitologica Polonica, 6, 251–271.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Borislav Stoyanov
    • 1
  • Simona Georgieva
    • 2
  • Plamen Pankov
    • 1
  • Olena Kudlai
    • 2
    • 3
  • Aneta Kostadinova
    • 2
  • Boyko B. Georgiev
    • 1
  1. 1.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Parasitology BiologyCentre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
  3. 3.Water Research Group, Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations