Systematic Parasitology

, Volume 93, Issue 7, pp 639–652 | Cite as

Transversotrema Witenberg, 1944 (Trematoda: Transversotrematidae) from inshore fishes of Australia: description of a new species and significant range extensions for three congeners

  • Scott C. Cutmore
  • Ben K. Diggles
  • Thomas H. Cribb
Article

Abstract

Four transversotrematid trematodes are reported from commercial teleost species in Australian waters. Transversotrema hunterae n. sp. is described from three species of Sillago Cuvier (Sillaginidae) from Moreton Bay, south-east Queensland. Molecular characterisation using ITS2 rDNA confirmed this stenoxenic specificity of Transversotrema hunterae n. sp., with identical sequence data from Sillago maculata Quoy & Gaimard, S. analis Whitley and S. ciliata Cuvier. Phylogenetic analysis, based on 28S rDNA data, demonstrates that T. hunterae n. sp. belongs to the ‘Transversotrema licinum clade’ and is most closely related to Transversotrema licinum Manter, 1970 and T. polynesiae Cribb, Adlard, Bray, Sasal & Cutmore, 2014, with the three species forming a well-supported clade in all analyses. We extend the known host and geographical ranges of three previously described Transversotrema species, T. licinum, T. elegans Hunter, Ingram, Adlard, Bray & Cribb, 2010 and T. espanola Hunter & Cribb, 2012. The new records represent significant range extensions for the three species and permit further examination of the patterns of biogeographical distribution in Australian waters. Host-specificity of Transversotrema species is examined, and the degree to which morphological analysis can inform taxonomic studies of this group is discussed.

References

  1. Abdul-Salam, J., & Sreelatha, B. N. S. (1992). The surface topography and ultrastructure of the tegument of the ectoparasitic digenean Transversotrema licinum. Zoologischer Anzeiger, 228, 248–261.Google Scholar
  2. Agarwal, N., & Singh, H. S. (1981). On a rare trematode, Transversotrema chauhani n. sp. from a freshwater fish, Nandus nandus (Ham.). Current Science (Bangalore), 50, 426–427.Google Scholar
  3. Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J., & Förster, F. (2015). ITS2 Database V: Twice as much. Molecular Biology and Evolution, 32, 3030–3032.CrossRefPubMedGoogle Scholar
  4. Blasco-Costa, I., Cutmore, S. C., Miller, T. L., & Nolan, M. J. (2016). Molecular approaches to trematode systematics: ‘Best practice’ and implications for future study. Systematic Parasitology, 93, 295–306.CrossRefPubMedGoogle Scholar
  5. Cribb, T. H., Adlard, R. D., Bray, R. A., Sasal, P., & Cutmore, S. C. (2014a). Biogeography of tropical Indo-West Pacific parasites: A cryptic species of Transversotrema and evidence for rarity of Transversotrematidae (Trematoda) in French Polynesia. Parasitology International, 63, 285–294.CrossRefPubMedGoogle Scholar
  6. Cribb, T. H., Anderson, G. R., Adlard, R. D., & Bray, R. A. (1998). A DNA-based demonstration of a three-host life-cycle for the Bivesiculidae (Platyhelminthes: Digenea). International Journal for Parasitology, 28, 1791–1795.CrossRefPubMedGoogle Scholar
  7. Cribb, T. H., Bott, N. J., Bray, R. A., McNamara, M. K. A., Miller, T. L., Nolan, M. J., et al. (2014b). Trematodes of the Great Barrier Reef: Emerging patterns of diversity and richness in coral reef fishes. International Journal for Parasitology, 44, 929–939.CrossRefPubMedGoogle Scholar
  8. Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: Approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7.CrossRefPubMedGoogle Scholar
  9. Cribb, T. H., Bray, R. A., Diaz, P. E., Huston, D. C., Kudlai, O., Martin, S. B., et al. (2016). Trematodes of fishes of the Indo-west Pacific: Told and untold richness. Systematic Parasitology, 93, 237–247.CrossRefPubMedGoogle Scholar
  10. Crusz, H. (1956). The progenetic trematode Cercaria patialensis Soparkar in Ceylon. Journal of Parasitology, 42, 245.CrossRefGoogle Scholar
  11. Crusz, H., Ratnayake, W. E., & Sathananthan, A. H. (1964). Observations on the structure and life-cycle of the digenetic fish-trematode Transversotrema patialense (Soparkar). Ceylon Journal of Science, 5, 8–17.Google Scholar
  12. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hayward, C. J. (1997). Helminth ectoparasites of sillaginid fishes (Perciformes: Percoidei) have low species richness. Folia Parasitologica, 44, 173–187.PubMedGoogle Scholar
  15. Hunter, J. A., & Cribb, T. H. (2010). Transversotrematidae (Platyhelminthes: Trematoda) are rich and abundant on Indo-Pacific fishes. Zootaxa, 2442, 25–38.Google Scholar
  16. Hunter, J. A., & Cribb, T. H. (2012). A cryptic complex of species related to Transversotrema licinum Manter, 1970 from fishes of the Indo-West Pacific, including descriptions of ten new species of Transversotrema Witenberg, 1944 (Digenea: Transversotrematidae). Zootaxa, 3176, 1–44.Google Scholar
  17. Hunter, J. A., Hall, K. A., & Cribb, T. H. (2012). A complex of Transversotrematidae (Platyhelminthes: Digenea) associated with mullid fishes of the Indo-West Pacific Region, including the descriptions of four new species of Transversotrema. Zootaxa, 3266, 1–22.Google Scholar
  18. Hunter, J. A., Ingram, E., Adlard, R. D., Bray, R. A., & Cribb, T. H. (2010). A cryptic complex of Transversotrema species (Digenea: Transversotrematidae) on labroid, haemulid and lethrinid fishes in the Indo-West Pacific Region, including the description of three new species. Zootaxa, 2652, 17–32.Google Scholar
  19. Johnson, J. W. (2010). Fishes of the Moreton Bay Marine Park and adjacent continental shelf waters, Queensland, Australia. Memoirs of the Queensland Museum, 54, 299–353.Google Scholar
  20. Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T., & Wolf, M. (2009). 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene, 430, 50–57.CrossRefPubMedGoogle Scholar
  21. Littlewood, D. T. J. (1994). Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Molecular Phylogenetics and Evolution, 3, 221–229.CrossRefPubMedGoogle Scholar
  22. Littlewood, D. T. J., Curini-Galletti, M., & Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution, 16, 449–466.CrossRefPubMedGoogle Scholar
  23. Littlewood, D. T. J., Rohde, K., & Clough, K. A. (1997). Parasite speciation within or between host species?—Phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology, 27, 1289–1297.CrossRefPubMedGoogle Scholar
  24. Lockyer, A. E., Olson, P. D., & Littlewood, D. T. J. (2003). Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): Implications and a review of the cercomer theory. Biological Journal of the Linnean Society, 78, 155–171.CrossRefGoogle Scholar
  25. Maddison, W. P., & Maddison, D. R. (2015). Mesquite: a modular system for evolutionary analysis. Version 3.01 http://mesquiteproject.org.
  26. Manter, H. W. (1970). A new species of Transversotrema (Trematoda: Digenea) from marine fishes of Australia. Journal of Parasitology, 56, 486–489.CrossRefGoogle Scholar
  27. Miller, T. L., Bray, R. A., & Cribb, T. H. (2011). Taxonomic approaches to and interpretation of host specificity of trematodes of fishes: Lessons from the Great Barrier Reef. Parasitology, 138, 1710–1722.CrossRefPubMedGoogle Scholar
  28. Miller, M. A., Pfeiler, E., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE) ,14 Nov. 2010, New Orleans, LA, (pp. 1–8)Google Scholar
  29. Morgan, J. A., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: An aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615.CrossRefPubMedGoogle Scholar
  30. Nolan, M. J., & Cribb, T. H. (2006). An exceptionally rich complex of Sanguinicolidae von Graff, 1907 (Platyhelminthes: Trematoda) from Siganidae, Labridae and Mullidae (Teleostei: Perciformes) from the Indo-West Pacific Region. Zootaxa, 1218, 3–80.Google Scholar
  31. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  33. Sey, O., Nahhas, F. M., Uch, S., & Vang, C. (2003). Digenetic trematodes from marine fishes off the coast of Kuwait, Arabian Gulf: Fellodistomidae and some smaller families, new host and geographic records. Acta Zoologica Academiae Scientiarum Hungaricae, 49, 179–200.Google Scholar
  34. Snyder, S. D., & Tkach, V. V. (2001). Phylogenetic and biogeographical relationships among some holarctic frog lung flukes (Digenea: Haematoloechidae). Journal of Parasitology, 87, 1433–1440.CrossRefPubMedGoogle Scholar
  35. Spalding, M. D., Fox, H. E., Halpern, B. S., McManus, M. A., Molnar, J., Allen, G. R., et al. (2007). Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience, 57, 573–583.CrossRefGoogle Scholar
  36. Stamatakis, A. (2014). RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 10.1093/bioinformatics/btu033 http://bioinformatics.oxfordjournals.org/content/early/2014/01/21/bioinformatics.btu033.abstract.
  37. Trieu, N., Cutmore, S. C., Miller, T. L., & Cribb, T. H. (2015). A species pair of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: Implications for the basis of speciation in coral reef fish trematodes. Systematic Parasitology, 91, 231–239.CrossRefPubMedGoogle Scholar
  38. Velasquez, C. C. (1966). Some parasitic helminths of Phillipine fishes. The U. P. Research Digest, 5, 23–29.Google Scholar
  39. Witenberg, G. (1944). Transversotrema haasi, a new fish trematode. Journal of Parasitology, 30, 179–180.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Scott C. Cutmore
    • 1
  • Ben K. Diggles
    • 2
  • Thomas H. Cribb
    • 1
  1. 1.School of Biological SciencesThe University of QueenslandSt LuciaAustralia
  2. 2.DigsFish Services Pty LtdBanksia BeachAustralia

Personalised recommendations