Systematic Parasitology

, Volume 91, Issue 1, pp 1–12 | Cite as

Redescription of Aphalloides coelomicola Dollfus, Chabaud & Golvan, 1957 (Digenea, Opisthorchioidea) based on specimens from Knipowitschia caucasica (Berg) (Actinopterygii, Gobionellidae) from a Black Sea lagoon, with comments on the systematic position of the genus

  • Borislav Stoyanov
  • Boyko Neov
  • Plamen Pankov
  • Georgi Radoslavov
  • Peter Hristov
  • Boyko B. Georgiev


The genus Aphalloides Dollfus, Chabaud & Golvan, 1957 consists of two species parasitic in the body cavity of sand gobies. Its systematic position in the superfamily Opisthorchioidea Looss, 1899 is unresolved and it has been placed by various authors in three families, i.e. Cryptogonimidae Ward, 1917, Heterophyidae Leiper, 1909 and Opisthorchiidae Looss, 1899. Its type-species, Aphalloides coelomicola Dollfus, Chabaud & Golvan, 1957, is here reported from the Caucasian dwarf goby Knipowitschia caucasica (Berg) in the lagoon Atanasovsko Lake, Black Sea coast of Bulgaria (new geographical record). The species is redescribed based on light and scanning electron microscopy demonstrating some characters typical for the Cryptogonimidae but also characters distinguishing it from the other genera of the family such as the lack of tegumental spines and the presence of a short excretory vesicle, which does not extend into the forebody. Phylogenetic analysis of the D2-D3 expansion segments of the 28S rRNA gene suggests phylogenetic relationships of Aphalloides coelomicola with the cryptogonimid Centrovarium lobotes (MacCallum, 1895). These data support the affiliation of the genus Aphalloides to the family Cryptogonimidae. The peculiar morphology of the species in the genus is explained by their unusual life-cycles characterised by progenetic development; sand gobies being simultaneously second intermediate and definitive hosts.


Ventral Sucker Oral Sucker Genital Pore Seminal Receptacle Anterior Testis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the Ministry of Environment and Waters of the Republic of Bulgaria for permits (NCZP-151/11.05.2012 and NCZP-168/29.04.2013) to carry out field studies in Atanasovsko Lake Reserve. The field study was based at Atanasovsko Lake Field Station of the Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences; the assistance of the staff of this station as well as of Konstantin Popov and Pavel Nikolov is acknowledged. Gergana P. Vasileva and Yasen Mutafchiev provided valuable advice to the senior author in the course of the laboratory work and SEM observations, respectively. Aneta Kostadinova kindly helped in providing some of the literature sources needed. Ichthyologists Apostolos Apostolou and Velislav Zarev kindly confirmed the identification of the host species. This study was funded by the National Science Fund of the Republic of Bulgaria, Grant YS DO 02-271/18.12.2008. Facilities developed in the frames of the projects WETLANET (FP7, CAPACITIES, Grant 229802) and CEBDER (National Science Fund of the Republic of Bulgaria, Grant DO 02-15/2009) were used in the course of the present study.


  1. Bakke, T. A. (1980). A scanning electron microscope study of the microtopography of Aphalloides timmi Reimer, 1970 (Digenea; Cryptogonimidae). Fauna Norvegica, Series A, 1, 38–44.Google Scholar
  2. Bayssade-Dufour, C., & Maillard, C. (1982). Discussion sur la position taxonomique d’Aphalloides coelomicola Dollfus, Chabaud et Golvan, 1957 (Trematoda, Opisthorchioidea). Annales de Parasitologie Humaine et Comparée, 57, 549–553.PubMedGoogle Scholar
  3. Brooks, D. R. (1980). Revision of the Acanthostominae Poche, 1926 (Digenea: Cryptogonimidae). Zoological Journal of the Linnean Society, 70, 313–382.CrossRefGoogle Scholar
  4. De Ley, P., Félix, M. A., Frisse, L. M., Nadler, S. A., Sternberg, P. W., & Thomas, W. K. (1999). Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology, 1, 591–612.CrossRefGoogle Scholar
  5. Dollfus, R.-P., Chabaud, A. G., & Golvan, Y. J. (1957). Helminthes de la région du Banyuls. V. Nouveau distome Aphalloides coelomicola n. gen. n. sp. de la cavité générale d’un Gobius d’eau saumâtre. Annales de Parasitologie Humaine et Comparée, 32, 28–40.PubMedGoogle Scholar
  6. Gaevskaya, A. V. (2012). Parasites and diseases of fishes in the Black Sea and the Sea of Azov. I. Marine, brackish and diadromous fishes. Sevastopol: EKOSI-Gidrofizika, 380 pp (In Russian).Google Scholar
  7. Hoffman, G. L. (1999). Parasites of North American Freshwater Fishes (Second Edition). Ithaca: Cornell University Press, 539 pp.Google Scholar
  8. Krasnovyd, V., Kvach, Y., & Drobiniak, O. (2012). The parasite fauna of the gobiid fish (Actinopterygii, Gobiidae) in the Sukhyi Lyman, Black Sea. Vestnik Zoologii, 46, e-1–e-8.Google Scholar
  9. Kvach, Y. (2004a). The helminth fauna of gobiid fishes (Gobiidae) from the Tyligul Estuary of the Black Sea. Visnyk of L’viv University, Biology Series, 37, 144–148. (In Ukrainian).Google Scholar
  10. Kvach, Y. (2004b). [Fishes of the family Gobiidae from the north-western parts of the Black Sea as intermediate and paratenic hosts of helminths]. In: Minicheva, G. G. & Kats, B. M. (Eds) Ekologichni Problema Chornogo Morya. 36. Materialiv do 6-go Mizhnarodnogo Simpoziumu, 11–12 Listopada 2004, Odesa. Odesa: Odeskiy Tsentr Naukovoy-tekhnicheskoy ta ekonomicheskoy Informatsii, pp. 225–229 (In Russian).Google Scholar
  11. Kvach, Y. (2005). A comparative analysis of helminth faunas and infection parameters of ten species of gobiid fishes (Actinopterygii: Gobiidae) from the north-western Black Sea. Acta Ichthyologica et Piscatoria, 35, 103–110.Google Scholar
  12. Kvach, Y. (2010). Helminths of the Marbled Goby (Pomatoschistus marmoratus), a Mediterranean immigrant in the Black Sea fauna. Vestnik Zoologii, 44, 2e-25–e34.Google Scholar
  13. Kvach, Y., & Winkler, H. M. (2011). The colonization of the invasive round goby Neogobius melanostomus by parasites in new localities in the southwestern Baltic Sea. Parasitology Research, 109, 769–780.CrossRefPubMedGoogle Scholar
  14. Lefebvre, F., & Poulin, R. (2005). Progenesis in digenean trematodes: a taxonomic and synthetic overview of species reproducing in their second intermediate hosts. Parasitology, 130, 587–605.CrossRefPubMedGoogle Scholar
  15. Maillard, M. C. (1973). Mise en évidence du cycle évolutif abrégé d’Aphalloides coelomicola Dollfus, Chabaud et Golvan, 1957 (Trematoda). Notion d’«hôte historique». Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris, Séries D, 277, 317–320.Google Scholar
  16. Miller, T. L., & Cribb, T. H. (2005). A new genus and species of cryptogonimid from Lutjanus spp. (Pisces: Lutjanidae) on the Great Barrier Reef and New Caledonia. Journal of Parasitology, 91, 922–924.CrossRefPubMedGoogle Scholar
  17. Miller, T. L., & Cribb, T. H. (2007a). Coevolution of Retrovarium n. gen. (Digenea: Cryptogonimidae) in Lutjanidae and Haemulidae (Perciformes) in the Indo-West Pacific. International Journal for Parasitology, 37, 1023–1045.CrossRefPubMedGoogle Scholar
  18. Miller, T. L., & Cribb, T. H. (2007b). Two new cryptogonimid genera (Digenea, Cryptogonimidae) from Lutjanus bohar (Perciformes, Lutjanidae): analyses of ribosomal DNA reveals wide geographic distribution and presence of cryptic species. Acta Parasitologica, 52, 104–113.CrossRefGoogle Scholar
  19. Miller, T. L., & Cribb, T. H. (2007c). Two new cryptogonimid genera Beluesca n. gen. and Chelediadema n. gen. (Digenea: Cryptogonimidae) from tropical Indo-West Pacific Haemulidae (Perciformes). Zootaxa, 1543, 45–60.Google Scholar
  20. Miller, T. L., & Cribb, T. H. (2008a). Family Cryptogonimidae Ward, 1917. In: Bray, R. A., Gibson, D. I., Jones, A. (Eds) Keys to the Trematoda, Volume 3. Wallingford - London, UK: CABI Publishing & The Natural History Museum, pp. 51–112.Google Scholar
  21. Miller, T. L., & Cribb, T. H. (2008b). Eight new species of Siphoderina Manter, 1934 (Digenea, Cryptogonimidae) infecting Lutjanidae and Haemulidae (Perciformes) off Australia. Acta Parasitologica, 53, 344–364.CrossRefGoogle Scholar
  22. Miller, T. L., & Cribb, T. H. (2009). Gynichthys diakidnus n. g., n. sp. (Digenea: Cryptogonimidae) from the grunt Plectorhinchus gibbosus (Lacépède, 1802) (Perciformes: Haemulidae) off the Great Barrier Reef, Australia. Systematic Parasitology, 74, 103–112.CrossRefPubMedGoogle Scholar
  23. Miller, T. L., & Cribb, T. H. (2013). Dramatic phenotypic plasticity within species of Siphomutabilus n. g. (Digenea: Cryptogonimidae) from Indo-Pacific caesionines (Perciformes: Lutjanidae). Systematic Parasitology, 86, 101–112.CrossRefPubMedGoogle Scholar
  24. Miller, T. L., Bray, R. A., Goiran, C., Justine, J.-L., & Cribb, T. H. (2009a). Adlardia novaecaledoniae n. g., n. sp. (Digenea: Cryptogonimidae) from the fork-tailed threadfin bream Nemipterus furcosus (Val.) (Perciformes: Nemipteridae) off New Caledonia. Systematic Parasitology, 73, 151–160.CrossRefPubMedGoogle Scholar
  25. Miller, T. L., Downie, A. J., & Cribb, T. H. (2009b). Morphological disparity despite genetic similarity; new species of Lobosorchis Miller & Cribb, 2005 (Digenea: Cryptogonimidae) from the Great Barrier Reef and the Maldives. Zootaxa, 1992, 37–52.Google Scholar
  26. Miller, T. L., Bray, R. A., Justine, J.-L., & Cribb, T. H. (2010). Varialvus gen. nov. (Digenea, Cryptogonimidae), from species of Lutjanidae (Perciformes) off the Great Barrier Reef, New Caledonia and the Maldives. Acta Parasitologica, 55, 327–339.CrossRefGoogle Scholar
  27. Morozov, F. N. (1952). Superfamily Heterophyoidea Faust, 1929. In: Skrjabin, K. I. (Ed.) [Trematodes of animals and man.] Osnovy Trematodologii, Vol. 6, pp. 153–601 (In Russian).Google Scholar
  28. Naydenova, N. N. (1970). The systematic position of Aphalloides coelomicola Dollfus, Chabaud & Golvan, 1957, a parasite of fishes of the family Gobiidae. Biologiya Morya, 20, 74–84 (In Russian).Google Scholar
  29. Naydenova, N. N. (1974). [Parasite fauna of fishes of the family Gobiidae from the Black Sea and the Sea of Azov]. Naukova Dumka, Kiev, 184 pp (In Russian).Google Scholar
  30. Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
  31. Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755.CrossRefPubMedGoogle Scholar
  32. Pampoulie, C., & Morand, S. (2002). Non-random association patterns in parasite infections caused by the host life cycle: Empirical evidence from Kudoa camarguensis (Myxosporea) and Aphalloides coelomicola (Trematoda). Journal of Parasitology, 88, 817–819.PubMedGoogle Scholar
  33. Pampoulie, C., Lambert, A., Rosecchi, E., Crivelli, A. J., Bouchereau, J. L., & Morand, S. (2000). Host death: a necessary condition for the transmission of Aphalloides coelomicola Dollfus, Chabaud, and Golvan, 1957 (Digenea, Cryptogonimidae)? Journal of Parasitology, 86, 416–417.CrossRefPubMedGoogle Scholar
  34. Pampoulie, C., Morand, S., Lambert, A., Rosecchi, E., Bouchereau, J. L., & Crivelli, A. J. (1999). Influence of the trematode Aphalloides coelomicola Dollfus, Chabaud & Golvan, 1957 on the fecundity and survival of Pomatoschistus microps (Krøyer, 1838) (Teleostei: Gobiidae). Parasitology, 119, 61–67.CrossRefPubMedGoogle Scholar
  35. Pampoulie, C., Rosecchi, E., Bouchereau, J. L., & Crivelli, A. J. (2004). Do environmental changes influence the occurrence and effect of parasites? Journal of Negative Results – Ecology and Evolutionary Biology, 1, 8–15.Google Scholar
  36. Pearson, J. (2008). Family Heterophyidae Leiper, 1909. In: Bray, R. A., Gibson, D. I., Jones, A. (Eds) Keys to the Trematoda. Volume 3. Wallingford - London, UK: CABI Publishing & The Natural History Museum, pp. 113–141.Google Scholar
  37. Reimer, L. W. (1970). Digene Trematoden und Cestoden der Ostseefische als Naturliche Fischmarken. Parasitologische Schriftenreihe, 20, 1–143.Google Scholar
  38. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Ohna, S. H., et al. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology, 61, 1–4.CrossRefGoogle Scholar
  39. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, V., Li, W., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Thacker, C. E. (2013). Phylogenetic placement of the European sand gobies in Gobionellidae and characterization of gobionellid lineages (Gobiiformes: Gobioidei). Zootaxa, 3619, 369–382.CrossRefGoogle Scholar
  42. Thaenkham, U., Nawa, Y., Blair, D., & Pakdee, W. (2011). Confirmation of the paraphyletic relationship between families Opisthorchiidae and Heterophyidae using small and large subunit ribosomal DNA sequences. Parasitology International, 60, 521–523.CrossRefPubMedGoogle Scholar
  43. Thaenkham, U., Blair, D., Nawa, Y., & Waikagul, J. (2012). Families Opisthorchiidae and Heterophyidae: Are they distinct? Parasitology International, 61, 90–93.CrossRefPubMedGoogle Scholar
  44. Vaes, M. (1978). Infection of the common goby, Pomatoschistus microps, with Aphalloides coelomicola (Trematoda Digenea). Vlaams Diergeneeskundig Tijdschrift, 47(3), 274–278.Google Scholar
  45. Yamaguti, S. (1971). Synopsis of Digenetic Trematodes of Vertebrates, Volume 2. Tokyo: Keigaku Publishing Co., 1074 pp.Google Scholar
  46. Zander, D. C. (2003). Four-year monitoring of parasite communities in gobiid fishes of the south-western Baltic. I. Guild and component community. Parasitology Research, 90, 502–511.CrossRefPubMedGoogle Scholar
  47. Zander, D. C. (2004). Four-year monitoring of parasite communities in gobiid fishes of the south-western Baltic. II. Infracommunity. Parasitology Research, 93, 17–29.CrossRefPubMedGoogle Scholar
  48. Zander, D. C. (2005a). Four-year monitoring of parasite communities in gobiid fishes of the southwest Baltic. III. Parasite species diversity and applicability of monitoring. Parasitology Research, 95, 136–144.CrossRefPubMedGoogle Scholar
  49. Zander, D. C. (2005b). Comparative studies on goby (Teleostei) parasite communities from the North and Baltic Sea. Parasitology Research, 96, 62–68.CrossRefPubMedGoogle Scholar
  50. Zander, D. C., Reimer, L. W., & Braz, K. (1999). Parasite communities of the Salzhaff (Northwest Mecklenburg, Baltic Sea). I. Structure and dynamics of communities of littoral Fish, especially small-sized fish. Parasitology Research, 85, 356–372.CrossRefPubMedGoogle Scholar
  51. Zander, D. C., Reimer, L. W., Braz, K., Dietel, G., & Strohbach, U. (2000). Parasite communities of the Salzhaff (Northwest Mecklenburg, Baltic Sea). II. Guild communities, with special regard to snails, benthic crustaceans, and small-sized fish. Parasitology Research, 86, 359–372.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Borislav Stoyanov
    • 1
  • Boyko Neov
    • 1
  • Plamen Pankov
    • 1
  • Georgi Radoslavov
    • 1
  • Peter Hristov
    • 1
  • Boyko B. Georgiev
    • 1
  1. 1.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations