Adams, F., & Aizawa, K. (2017). Causal theories of mental content. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (summer 2017 edition). https://plato.stanford.edu/archives/sum2017/entries/content-causal/.
Akaike, H. (1974). A new look at the statistical model identification. Paper presented at the IEEE Transactions on Automatic Control.
Allen, M. (2018). The foundation: Mechanism, prediction, and falsification in Bayesian enactivism: Comment on “Answering Schrödinger’s question: A free-energy formulation” by Maxwell James Désormeau Ramstead et al. Physics of Life Reviews, 24, 17–20. https://doi.org/10.1016/j.plrev.2018.01.007.
Article
Google Scholar
Allen, M., & Friston, K. J. (2016). From cognitivism to autopoiesis: Towards a computational framework for the embodied mind. Synthese, 195, 2459–2482. https://doi.org/10.1007/s11229-016-1288-5.
Article
Google Scholar
Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of General Psychology, 37(2), 125–128. https://doi.org/10.1080/00221309.1947.9918144.
Article
Google Scholar
Ashby, W. R. (1954). Design for a brain. New York: Wiley.
Book
Google Scholar
Bar, M. (2011). Predictions in the brain: Using our past to generate a future. Oxford: Oxford University Press.
Book
Google Scholar
Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1(3), 295–311. https://doi.org/10.1162/neco.1989.1.3.295.
Article
Google Scholar
Bickhard, M. H. (2009). The biological foundations of cognitive science. New Ideas in Psychology, 27(1), 75–84. https://doi.org/10.1016/j.newideapsych.2008.04.001.
Article
Google Scholar
Bickhard, M. H. (2016). The anticipatory brain: Two approaches. In V. C. Müller (Ed.), Fundamental issues of artificial intelligence (pp. 261–283). Cham: Springer International Publishing.
Chapter
Google Scholar
Bishop, C. M. (2007). Pattern recognition and machine learning. Cordrecht: Springer.
Google Scholar
Block, N. (2015). The puzzle of perceptual precision. In T. Metzinger & J. M. Windt (Eds.), Open MIND. Frankfurt am Main: MIND Group.
Google Scholar
Bogacz, R. (2017). A tutorial on the free-energy framework for modelling perception and learning. Journal of Mathematical Psychology, 76(Part B), 198–211. https://doi.org/10.1016/j.jmp.2015.11.003.
Article
Google Scholar
Brown, L. D. (1981). A complete class theorem for statistical problems with finite sample spaces. The Annals of Statistics, 9(6), 1289–1300.
Google Scholar
Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. https://doi.org/10.1016/j.jmp.2017.09.004.
Article
Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.
Article
Google Scholar
Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. New York: Oxford University Press.
Book
Google Scholar
Colombo, M., & Wright, C. (2018). First principles in the life sciences: The free-energy principle, organicism, and mechanism. Synthese. https://doi.org/10.1007/s11229-018-01932-w.
Article
Google Scholar
Constant, A., Ramstead, M. J. D., Veissière, S. P. L., Campbell, J. O., & Friston, K. J. (2018). A variational approach to niche construction. Journal of the Royal Society Interface, 15, 141. https://doi.org/10.1098/rsif.2017.0685.
Article
Google Scholar
Craver, C. F. (2005). Beyond reduction: Mechanisms, multifield integration and the unity of neuroscience. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 373.
Article
Google Scholar
Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352.
Article
Google Scholar
Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301.
Article
Google Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews: Neuroscience, 11(2), 127–138.
Article
Google Scholar
Friston, K. (2011). What is optimal about motor control? Neuron, 72(3), 488–498. https://doi.org/10.1016/j.neuron.2011.10.018.
Article
Google Scholar
Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface. https://doi.org/10.1098/rsif.2013.0475.
Article
Google Scholar
Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience. https://doi.org/10.1038/s41593-018-0200-7.
Article
Google Scholar
Friston, K. (2019). A free energy principle for a particular physics. Retrieved from arXiv arXiv:1906.10184.
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 1–49.
Article
Google Scholar
Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 6(4), 187–214. https://doi.org/10.1080/17588928.2015.1020053.
Article
Google Scholar
Friston, K., & Stephan, K. (2007). Free energy and the brain. Synthese, 159(3), 417–458.
Article
Google Scholar
Glüer, K., & Wikforss, Å. (2018). The normativity of meaning and content. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2018 Edition ed.). https://plato.stanford.edu/archives/spr2018/entries/meaning-normativity/.
Gregory, R. L. (1968). Perceptual illusions and brain models. Proceedings of the Royal Society of London, Series B: Biological Sciences, 171, 179–196.
Google Scholar
Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society B, 290, 181–197.
Google Scholar
Heeger, D. J. (2017). Theory of cortical function. Proceedings of the National Academy of Sciences, 114(8), 1773–1782. https://doi.org/10.1073/pnas.1619788114.
Article
Google Scholar
Helmholtz, H. V. (1867). Handbuch der Physiologishen Optik. Leipzig: Leopold Voss.
Google Scholar
Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.
Book
Google Scholar
Hohwy, J. (2015). The neural organ explains the mind. In T. K. Metzinger & J. M. Windt (Eds.), Open MIND. Frankfurt am Main: MIND Group.
Google Scholar
Hohwy, J. (2016). The self-evidencing brain. Noûs, 50(2), 259–285. https://doi.org/10.1111/nous.12062.
Article
Google Scholar
Jackson, F. (1998). From metaphysics to ethics. Oxford: Oxford University Press.
Google Scholar
Kant, I. (1787). Kritik der reinen Vernunft. In Königlichen Preußischen Akademie der Wissenschaften (Ed.), 1900–, Kants gesammelte Schriften.
Berlin: Georg Reimer.
Kauffman, S. (2019). A world beyond physics: the emergence and evolution of life. New York: Oxford University Press.
Google Scholar
Kiefer, A., & Hohwy, J. (2018). Content and misrepresentation in hierarchical generative models. Synthese, 195(6), 2387–2415. https://doi.org/10.1007/s11229-017-1435-7.
Article
Google Scholar
Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: Autonomy, active inference and the free energy principle. Journal of the Royal Society Interface, 15, 138. https://doi.org/10.1098/rsif.2017.0792.
Article
Google Scholar
Klein, C. (2016). What do predictive coders want? Synthese, 195(6), 2541–2557. https://doi.org/10.1007/s11229-016-1250-6.
Article
Google Scholar
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.
Article
Google Scholar
Kripke, S. (1982). Wittgenstein on rules and private language. Oxford: Oxford University Press.
Google Scholar
Libet, B. (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. The Behavioral and Brain Sciences, 8, 529–566.
Article
Google Scholar
Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness potential): The unconscious initiation of a freely voluntary act. Brain, 106, 623–642.
Article
Google Scholar
MacKay, D. M. C. (1956). The epistemological problem for automata. In C. Shannon & J. McCarthy (Eds.), Automata studies (pp. 235–251). Princeton, NJ: Princeton University Press.
Google Scholar
Mathys, C., Daunizeau, J., Friston, K., & Stephan, K. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2011.00039.
Article
Google Scholar
Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., et al. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2014.00825.
Article
Google Scholar
Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.
Google Scholar
Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: Wiley.
Google Scholar
Parr, T., Markovic, D., Kiebel, S. J., & Friston, K. J. (2019). Neuronal message passing using Mean-field, Bethe, and Marginal approximations. Scientific Reports, 9(1), 1889. https://doi.org/10.1038/s41598-018-38246-3.
Article
Google Scholar
Piekarski, M. (2019). Normativity of predictions: A new research perspective. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2019.01710.
Article
Google Scholar
Prigogine, I., & Nicolis, G. (1971). Biological order, structure and instabilities. Quarterly Reviews of Biophysics, 4(2–3), 107–148. https://doi.org/10.1017/S0033583500000615.
Article
Google Scholar
Rahnev, D., & Denison, R. N. (2018). Behavior is sensible but not globally optimal: Seeking common ground in the optimality debate. Behavioral and Brain Sciences, 41, e251. https://doi.org/10.1017/S0140525X18002121.
Article
Google Scholar
Schrödinger, E. (1944). What is life?. Cambridge: Cambridge University Press.
Google Scholar
Schwöbel, S., Kiebel, S., & Marković, D. (2018). Active inference, belief propagation, and the bethe approximation. Neural Computation. https://doi.org/10.1162/neco_a_01108.
Article
Google Scholar
Sims, A. (2016). A problem of scope for the free energy principle as a theory of cognition. Philosophical Psychology, 29(7), 967–980. https://doi.org/10.1080/09515089.2016.1200024.
Article
Google Scholar
Smart, B. T. H., & Thébault, K. P. Y. (2015). Dispositions and the principle of least action revisited. Analysis, 75(3), 386–395. https://doi.org/10.1093/analys/anv050.
Article
Google Scholar
Spratling, M. W. (2017). A review of predictive coding algorithms. Brain and Cognition, 112, 92–97. https://doi.org/10.1016/j.bandc.2015.11.003.
Article
Google Scholar
Stefanics, G., Heinzle, J., Attila Horváth, A., & Enno Stephan, K. (2018). Visual mismatch and predictive coding: A computational single-trial ERP study. The Journal of Neuroscience, 38, 4020–4030. https://doi.org/10.1523/jneurosci.3365-17.2018.
Article
Google Scholar
Stöltzner, M. (2009). Can the principle of least action be considered a relativized a priori? In M. Bitbol, P. Kerszberg, & J. Petitot (Eds.), Constituting objectivity: Transcendental perspectives on modern physics (pp. 215–227). Dordrecht: Springer.
Chapter
Google Scholar
Vapnik, V. N. (1995). The nature of statistical learning theory. Dordrecht: Springer.
Book
Google Scholar
Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5(4), 187–196. https://doi.org/10.1016/0303-2647(74)90031-8.
Article
Google Scholar
Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23–29.
Article
Google Scholar
Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.
Google Scholar
Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: Analysis by synthesis? Trends Cogn Sci., 10(7), 301–308.
Article
Google Scholar
Zednik, C., & Jäkel, F. (2016). Bayesian reverse-engineering considered as a research strategy for cognitive science. Synthese, 193(12), 3951–3985. https://doi.org/10.1007/s11229-016-1180-3.
Article
Google Scholar
Zheng, D., Luo, V., Wu, J., & Tenenbaum, J. (2018). Unsupervised learning of latent physical properties using perception-prediction networks. Retrieved from arXiv arXiv:1807.09244.