Barrio, E., Rosenblatt, L., & Tajer, D. (2015). The logics of strict-tolerant logic. Journal of Philosophical Logic, 44(5), 551–571.
Article
Google Scholar
Barrio, E. A., Pailos, F., & Szmuc, D. (2020). A hierarchy of classical and paraconsistent logics. Journal of Philosophical Logic, 49, 93–120.
Article
Google Scholar
Beall, J., & Murzi, J. (2013). Two flavors of curry’s paradox. The Journal of Philosophy, 110(3), 143–165.
Article
Google Scholar
Bennett, B. (1998). Modal semantics for knowledge bases dealing with vague concepts. Principles of knowledge representation and reasoning (pp. 234–244). Burlington: Morgan Kaufmann.
Google Scholar
Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347–385.
Article
Google Scholar
Cobreros, P., Égré, P., Ripley, D., & Van Rooij, R. (2013). Reaching transparent truth. Mind, 122(488), 841–866.
Article
Google Scholar
Cobreros, P., Égré, P., Ripley, D., & Van Rooij, R. forthcoming. Inferences and metainferences in ST. Journal of Philosophical Logic.
Da Ré, B. (2020). Structural weakening and paradoxes. (manuscript)
Dicher, B., & Paoli, F. (2019). ST, LP, and tolerant metainferences. In C. Baskent & T. M. Ferguson (Eds.), Graham Priest on dialetheism and paraconsistency. Dordrecht: Springer.
Google Scholar
Fjellstad, A. (2017). Non-classical elegance for sequent calculus enthusiasts. Studia Logica, 105, 93–119.
Article
Google Scholar
Frankowski, S. (2004). Formalization of a plausible inference. Bulletin of the Section of Logic, 33(1), 41–52.
Google Scholar
French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo, an Open Access Journal of Philosophy, 3(5), 113–131.
Google Scholar
Girard, J.-Y. (1987). Proof-theory and logical complexity. Naples: Bibliopolis.
Google Scholar
Malinowski, G. (1990). Q-consequence operation. Reports on Mathematical Logic, 24, 49–54.
Google Scholar
Nait-Abdallah, A. (1995). The logic of partial information. Berlin: Springer.
Book
Google Scholar
Nicolai, C., & Rossi, L. (2018). Principles for object-linguistic consequence: From logical to irreflexive. Journal of Philosophical Logic, 47(3), 549–577.
Article
Google Scholar
Petersen, U. (2000). Logic without contraction as based on inclusion and unrestricted abstraction. Studia Logica, 64(3), 365–403.
Article
Google Scholar
Priest, G. (2008). An introduction to non-classical logic: From if to is. Cambridge: Cambridge University Press.
Book
Google Scholar
Ripley, D. (2013). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91(1), 139–164.
Article
Google Scholar
Ripley, D. (2015). Comparing substructural theories of truth. Ergo, An Open Access Journal of Philosophy, 2(13), 299–328.
Google Scholar
Rosenblatt, L. (2019). Non contractive classical logic. Notre Dame Journal of Formal Logic, 60(4), 559–585.
Article
Google Scholar
Scambler, C. (2019). Classical logic and the strict tolerant hierarchy. Journal of Philosophical Logic. https://doi.org/10.1007/s10992-019-09520-0
Shapiro, L. (2010). Deflating logical consequence. The Philosophical Quarterly, 61(243), 320–342.
Article
Google Scholar
Smullyan, R. (1995). First order logic. New York: Dover.
Google Scholar
Weir, A. (2005). Naïve truth and sophisticated logic. In J. C. Beall & Bradley Armour-Garb (Eds.), Deflationism and paradox (pp. 218–249). Oxford: Oxford University press.
Google Scholar
Zardini, E. (2008). A model of tolerance. Studia Logica, 90(3), 337–368.
Article
Google Scholar
Zardini, E. (2011). Truth without contra(di)ction. The Review of Symbolic Logic, 4(4), 498–535.
Article
Google Scholar