Advertisement

Synthese

pp 1–22 | Cite as

Conformity in scientific networks

  • James Owen WeatherallEmail author
  • Cailin O’Connor
Article

Abstract

Scientists are generally subject to social pressures, including pressures to conform with others in their communities, that affect achievement of their epistemic goals. Here we analyze a network epistemology model in which agents, all else being equal, prefer to take actions that conform with those of their neighbors. This preference for conformity interacts with the agents’ beliefs about which of two (or more) possible actions yields the better result. We find a range of possible outcomes, including stable polarization in belief and action. The model results are sensitive to network structure. In general, though, conformity has a negative effect on a community’s ability to reach accurate consensus about the world.

Keywords

Conformity Epistemic networks Small worlds False beliefs 

Notes

Acknowledgements

This paper is partially based upon work supported by the National Science Foundation under Grant No. 1535139. We are grateful to Jeff Barrett, Aydin Mohseni, and Mike Schneider for helpful conversations related to this manuscript.

References

  1. Asch, S. E., & Guetzkow, H. (1951). Effects of group pressure upon the modification and distortion of judgments. In H. Guetzkow (Ed.), Groups, leadership, and men (pp. 222–236). Pittsburgh: Carnegie Press.Google Scholar
  2. Bala, V., & Goyal, S. (1998). Learning from neighbors. Review of Economic Studies, 65(3), 595–621.CrossRefGoogle Scholar
  3. Banerjee, A. V. (1992). A simple model of herd behavior. The Quarterly Journal of Economics, 107(3), 797–817.CrossRefGoogle Scholar
  4. Baron, R. S., Vandello, J. A., & Brunsman, B. (1996). The forgotten variable in conformity research: Impact of task importance on social influence. Journal of Personality and Social Psychology, 71(5), 915.CrossRefGoogle Scholar
  5. Berger, S., Feldhaus, C., & Ockenfels, A. (2018). A shared identity promotes herding in an information cascade game. Journal of the Economic Science Association, 4(1), 63–72.CrossRefGoogle Scholar
  6. Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5), 992–1026.CrossRefGoogle Scholar
  7. Bikhchandani, S., Hirshleifer, D., & Welch, I. (1998). Learning from the behavior of others: Conformity, fads, and informational cascades. The Journal of Economic Perspectives, 12(3), 151–170.CrossRefGoogle Scholar
  8. Bond, R., & Smith, P. B. (1996). Culture and conformity: A meta-analysis of studies using Asch’s (1952b, 1956) line judgment task. Psychological Bulletin, 119(1), 111.CrossRefGoogle Scholar
  9. Borg, A., Frey, D., Šešelja, D., & Straßer, C. (2017). Examining network effects in an argumentative agent-based model of scientific inquiry. In International workshop on logic, rationality and interaction (pp. 391–406). Berlin: Springer.Google Scholar
  10. Bramson, A., Grim, P., Singer, D. J., Berger, W. J., Sack, G., Fisher, S., et al. (2017). Understanding polarization: Meanings, measures, and model evaluation. Philosophy of Science, 84(1), 115–159.CrossRefGoogle Scholar
  11. Carter, K. C. (2017). Childbed fever: A scientific biography of Ignaz Semmelweis. London: Routledge.CrossRefGoogle Scholar
  12. Colombo, L., Femminis, G., & Pavan, A. (2014). Information acquisition and welfare. The Review of Economic Studies, 81(4), 1438–1483.CrossRefGoogle Scholar
  13. Condorcet, M. D. (1785). Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix.Google Scholar
  14. Egebark, J., & Ekström, M. (2011). Like what you like or like what others like? conformity and peer effects on Facebook.Google Scholar
  15. Erdös, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen, 6, 290–297.Google Scholar
  16. Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80(S1), 298–320.CrossRefGoogle Scholar
  17. Frey, D., & Şeşelja, D. (2018). What is the epistemic function of highly idealized agent-based models of scientific inquiry? Philosophy of the Social Sciences, 48(4), 407–433.CrossRefGoogle Scholar
  18. Frey, D., & Šešelja, D. (2019). Robustness and idealizations in agent-based models of scientific interaction. The British Journal for the Philosophy of Science.  https://doi.org/10.1093/bjps/axy039.
  19. Gilbert, E. N. (1959). Random graphs. The Annals of Mathematical Statistics, 30(4), 1141–1144.CrossRefGoogle Scholar
  20. Grundy, I. (1999). Lady Mary Wortley Montagu. Oxford: Clarendon Press.Google Scholar
  21. Hellwig, C., & Veldkamp, L. (2009). Knowing what others know: Coordination motives in information acquisition. The Review of Economic Studies, 76(1), 223–251.CrossRefGoogle Scholar
  22. Holman, B., & Bruner, J. (2017). Experimentation by industrial selection. Philosophy of Science, 84(5), 1008–1019.CrossRefGoogle Scholar
  23. Holman, B., & Bruner, J. P. (2015). The problem of intransigently biased agents. Philosophy of Science, 82(5), 956–968.CrossRefGoogle Scholar
  24. Imbert, C., Boyer-Kassem, T., Chevrier, V., & Bourjot, C. (2019). Improving deliberations by reducing misrepresentation effects. Episteme, 3, 1–17.Google Scholar
  25. Kummerfeld, E., & Zollman, K. J. (2015). Conservatism and the scientific state of nature. The British Journal for the Philosophy of Science, 67(4), 1057–1076.CrossRefGoogle Scholar
  26. Mayo-Wilson, C., Zollman, K. J., & Danks, D. (2011). The independence thesis: When individual and social epistemology diverge. Philosophy of Science, 78(4), 653–677.CrossRefGoogle Scholar
  27. Mohseni, A., & Williams, C. R. (2017). Truth and conformity on networks (working paper).Google Scholar
  28. Myatt, D. P., & Wallace, C. (2011). Endogenous information acquisition in coordination games. The Review of Economic Studies, 79(1), 340–374.CrossRefGoogle Scholar
  29. Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.CrossRefGoogle Scholar
  30. O’Connor, C., & Weatherall, J. O. (2017). Scientific polarization. arXiv:1712.04561 [cs.SI].
  31. O’Connor, C., & Weatherall, J. O. (2019). The misinformation age: How false beliefs spread. New Haven: Yale University Press.CrossRefGoogle Scholar
  32. Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., et al. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences, 104(18), 7332–7336.CrossRefGoogle Scholar
  33. Pariser, E. (2011). The filter bubble: How the new personalized web is changing what we read and how we think. New York: Penguin.Google Scholar
  34. Rosenstock, S., Bruner, J., & O’Connor, C. (2017). In epistemic networks, is less really more? Philosophy of Science, 84(2), 234–252.CrossRefGoogle Scholar
  35. Semmelweis, I. F. (1983). The etiology, concept, and prophylaxis of childbed fever. No. 2. Madison: University of Wisconsin Press.Google Scholar
  36. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.CrossRefGoogle Scholar
  37. Weatherall, J. O., O’Connor, C., & Bruner, J. (2017). How to beat science and influence people. arXiv:1801.01239 [cs.SI].
  38. Zollman, K. J. (2007). The communication structure of epistemic communities. Philosophy of Science, 74(5), 574–587.CrossRefGoogle Scholar
  39. Zollman, K. J. (2010a). The epistemic benefit of transient diversity. Erkenntnis, 72(1), 17.CrossRefGoogle Scholar
  40. Zollman, K. J. S. (2010b). Social structure and the effects of conformity. Synthese, 172(3), 317–340.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations