Alvarez-Gaumé, L., & Vázquez-Mozo, M. A. (2011). Chapter 12: An invitation to quantum field theory (Vol. 839)., Lecture notes in physics Berlin: Springer.
Google Scholar
Amaldi, U., de Boer, W., & Fürstenau, H. (1991). Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Physics Letters B, 260, 447–455.
Article
Google Scholar
Anderson, G., & Castano, D. (1995). Measures of fine tuning. Physics Letters B, 347, 300–308.
Article
Google Scholar
Appelquist, T., & Carazzone, J. (1975). Infrared singularities and massive fields. Physical Review D, 11, 28565.
Article
Google Scholar
Arkani-Hamed, N., & Schmaltz, M. (2000). Hierarchies without symmetries from extra dimensions. Physical Review D, 61, 033005. https://doi.org/10.1103/PhysRevD.61.033005.
Article
Google Scholar
Barnes, L. A. (2012). The fine-tuning of the universe for intelligent life. Publications of the Astronomical Society of Australia, 29, 529. https://doi.org/10.1071/AS12015.
Article
Google Scholar
Barrow, J. D. (1981). The Lore of large numbers: Some historical background to the Anthropic principle. Quarterly Journal of the Royal Astronomical Society, 22, 388–420.
Google Scholar
Baumann, D. (2009). TASI lectures on inflation, C09-06-01. Vol. 3, pp. 523–686. arXiv:0907.5424.
Beisbart, C., & Hartmann, S. (2011). Probabilities in physics. Oxford: Oxford University Press.
Book
Google Scholar
Burgess, C. P. (2007). Introduction to effective field theory. Annual Review of Nuclear and Particle Science, 57, 329–362.
Article
Google Scholar
Chowdhury, D., Martin, J., Ringeval, C., & Vennin, V. (2019). Inflation after Planck: Judgment day. arXiv:1902.03951 [astro-ph.CO].
Dicus, D. A., Kolb, E. W., Teplitz, V. L., & Wagoner, R. V. (1978). Astrophysical bounds on the masses of axions and Higgs particles. Physical Review D, 18, 1829.
Article
Google Scholar
Dicus, D. A., Kolb, E. W., Teplitz, V. L., & Wagoner, R. V. (1980). Astrophysical bounds on very low mass axions. Physical Review D, 22, 839.
Article
Google Scholar
Dine, M. (2015). Naturalness under stress. Annual Review of Nuclear and Particle Science, 65, 43–62.
Article
Google Scholar
Ellis, S. A. R., & Wells, J. D. (2017). High-scale supersymmetry, the Higgs mass and Gauge unification. Physical Review D, 96, 055024.
Article
Google Scholar
Ellis, G. F. R., Kirchner, U., & Stoeger, W. R. (2004). Multiverses and physical cosmology. Monthly Notices of the Royal Astronomical Society, 347, 921. https://doi.org/10.1111/j.1365-2966.2004.07261.x.
Article
Google Scholar
Gies, H. (2012). Introduction to the functional RG and applications to gauge theories. Lecture notes in physics (Vol. 852, pp. 287–348). Berlin: Springer.
Google Scholar
Giudice, G. -F. (2008). Naturally speaking: The naturalness criterion and physics at the LHC. arXiv:0801.2562.
Glashow, S. L., Iliopoulos, J., & Maiani, L. (1970). Weak interactions with Lepton-Hadron symmetry. Physical Review D, 2, 1285.
Article
Google Scholar
Grinbaum, A. (2012). Which fine-tuning arguments are fine? Foundations of Physics, 42, 615–631.
Article
Google Scholar
Ijjas, A., Steinhardt, P. J., & Loeb, A. (2013). Inflationary paradigm in trouble after Planck 2013. Physics Letters B, 723, 261. https://doi.org/10.1016/j.physletb.2013.05.023.
Article
Google Scholar
Kaplan, D. E., & Rattazzi, R. (2016). Large field excursions and approximate discrete symmetries from a clockwork axion. Physical Review D, 93(8), 085007.
Article
Google Scholar
Lehners, J. L., & Steinhardt, P. J. (2013). Planck 2013 results support the cyclic universe. Physical Review D, 87(12), 123533. https://doi.org/10.1103/PhysRevD.87.123533.
Article
Google Scholar
Martel, H., Shapiro, P. R., & Weinberg, S. (1998). Likely values of the cosmological constant. The Astrophysical Journal, 492, 29.
Article
Google Scholar
Martin, J. (2012). Everything you always wanted to know about the cosmological constant problem (But Were Afraid To Ask). Comptes Rendus Physique, 13, 566–665.
Article
Google Scholar
Martin, J. (2019). Cosmic inflation: Trick or treat?. arXiv:1902.05286 [astro-ph.CO].
Merrit, D. (2017). Cosmology and convention. Studies in History and Philosophy of Modern Physics, 57, 41–52.
Article
Google Scholar
Norton, J. D. (2011). Challenges to Bayesian confirmation theory. In P. S. Bandyopadhyay, M. R. Forster, & B. V. Elsevier (Eds.), Handbook of the philosophy of science. Philosophy of statistics (Vol. 7, pp. 391–440). Amsterdam: Elsevier.
Google Scholar
Porter, W. (2015). Naturalness, the autonomy of scales, and the 125 GeV Higgs. Studies in History and Philosophy of Modern Physics, 51, 82–96.
Google Scholar
Randall, L., & Sundrum, R. (1999a). A Large mass hierarchy from a small extra dimension. Physical Review Letters, 83, 3370.
Article
Google Scholar
Randall, L., & Sundrum, R. (1999b). An alternative to compactification. Physical Review Letters, 83, 4690.
Article
Google Scholar
‘t Hooft, G. (1980). Proceedings of the 1979 Cargese Institute on Recent Developments in Gauge Theories (p. 135). New York: Plenum Press.
Wallace, D. (2014). Probability in physics: Statistical, stochastic, quantum. In A. Wilson (Ed.), Chance and temporal asymmmetry. Oxford: Oxford University Press.
Google Scholar
Weinberg, S. (1978). A new light Boson? Physical Review Letters, 40, 223.
Article
Google Scholar
Wilczek, F. (1978). Problem of strong p and t invariance in the presence of instantons. Physical Review Letters, 40, 279.
Article
Google Scholar
Williams, P. (2015). Naturalness, the autonomy of scales, and the 125 GeV Higgs. Studies in History and Philosophy of Modern Physics. ISSN: 1355–2198.
Williams, P. (2018). Two notions of naturalness. Foundations of Physics. https://doi.org/10.1007/s10701-018-0229-1.
Wu, J., & Bonnet, R. (2017). Maximize the impacts of space science. Nature, 551, 435–436.
Article
Google Scholar