Advertisement

Synthese

pp 1–24 | Cite as

Integrating computation into the mechanistic hierarchy in the cognitive and neural sciences

  • Lotem Elber-DorozkoEmail author
  • Oron Shagrir
S.I.: Explanations in Cognitive Science: Unification vs Pluralism

Abstract

It is generally accepted that, in the cognitive and neural sciences, there are both computational and mechanistic explanations. We ask how computational explanations can integrate into the mechanistic hierarchy. The problem stems from the fact that implementation and mechanistic relations have different forms. The implementation relation, from the states of an abstract computational system (e.g., an automaton) to the physical, implementing states is a homomorphism mapping relation. The mechanistic relation, however, is that of part/whole; the explaining features in a mechanistic explanation are the components of the explanandum phenomenon and their causal organization. Moreover, each component in one level of mechanism is constituted and explained by components of an underlying level of mechanism. Hence, it seems, computational variables and functions cannot be mechanistically explained by the medium-dependent states and properties that implement them. How then, do the computational and the implementational integrate to create the mechanistic hierarchy? After explicating the general problem (Sect. 2), we further demonstrate it through a concrete example, of reinforcement learning, in the cognitive and neural sciences (Sects. 3 and 4). We then examine two possible solutions (Sect. 5). On one solution, the mechanistic hierarchy embeds at the same levels computational and implementational properties. This picture fits with the view that computational explanations are mechanistic sketches. On the other solution, there are two separate hierarchies, one computational and another implementational, which are related by the implementation relation. This picture fits with the view that computational explanations are functional and autonomous explanations. It is less clear how these solutions fit with the view that computational explanations are full-fledged mechanistic explanations. Finally, we argue that both pictures are consistent with the reinforcement learning example, but that scientific practice does not align with the view that computational models are merely mechanistic sketches (Sect. 6).

Keywords

Cognitive neuroscience Computational explanations Mechanistic explanations Mechanistic hierarchy Mechanistic levels Implementation 

Notes

Acknowledgements

We thank Matteo Colombo, Nir Fresco, Arnon Levy, Corey J. Maley, Marcin Miłkowski, Gualtiero Piccinini, Mark Sprevak, the referees from Synthese journal, and the project members of the GIF project “Causation and computation in cognitive neuroscience” (Ori Hacohen, Jens Harbecke, Shahar Hechtlinger, Vera Hoffmann-Kolss, Jan Philipp Köster, and Carlos Zednik) as well as the participants in the IACAP2017 conference, EPSA17 symposium on ‘The Computational Mind’, and the participants of The Third Jerusalem-MCMP Workshop in the Philosophy of Science for helpful comments, which greatly helped to improve this manuscript. This paper was presented also in the colloquia seminars in Tel Chai college and Ben Gurion University. We also thank Zehava Cohen for creating the original figures in this paper. This research was supported by a grant from the GIF, the German- Israeli Foundation for Scientific Research and Development. Lotem Elber-Dorozko is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

References

  1. Bechtel, W. (2009). Looking down, around, and up: Mechanistic explanation in psychology. Philosophical Psychology, 22, 543–564.  https://doi.org/10.1080/09515080903238948.CrossRefGoogle Scholar
  2. Bechtel, W., & Shagrir, O. (2015). The non-redundant contributions of Marr’s three levels of analysis for explaining information-processing mechanisms. Topics in Cognitive Science, 7, 312–322.  https://doi.org/10.1111/tops.12141.CrossRefGoogle Scholar
  3. Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10, 1214–1221.  https://doi.org/10.1038/nn1954.CrossRefGoogle Scholar
  4. Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193, 1509–1534.  https://doi.org/10.1007/s11229-015-0783-4.CrossRefGoogle Scholar
  5. Botvinick, M. M. (2012). Hierarchical reinforcement learning and decision making. Current Opinion in Neurobiology, 22, 956–962.  https://doi.org/10.1016/j.conb.2012.05.008.CrossRefGoogle Scholar
  6. Botvinick, M. M., Niv, Y., & Barto, A. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition, 113, 262–280.  https://doi.org/10.1016/j.cognition.2008.08.011.CrossRefGoogle Scholar
  7. Chirimuuta, M. (2014). Minimal models and canonical neural computations: The distinctness of computational explanation in neuroscience. Synthese, 191, 127–153.  https://doi.org/10.1007/s11229-013-0369-y.CrossRefGoogle Scholar
  8. Chirimuuta, M. (2018). Explanation in computational neuroscience: Causal and non-causal. The British Journal for the Philosophy of Science, 69, 849–880.  https://doi.org/10.1093/bjps/axw034.CrossRefGoogle Scholar
  9. Coelho Mollo, D. (2018). Functional individuation, mechanistic implementation: The proper way of seeing the mechanistic view of concrete computation. Synthese, 195, 3477–3497.  https://doi.org/10.1007/s11229-017-1380-5.CrossRefGoogle Scholar
  10. Craver, C. F. (2016). The explanatory power of network models. Philosophy of Science, 83, 698–709.  https://doi.org/10.1086/687856.CrossRefGoogle Scholar
  11. Craver, C. F., & Povich, M. (2017). The directionality of distinctively mathematical explanations. Studies in History and Philosophy of Science, 63, 31–38.  https://doi.org/10.1016/j.shpsa.2017.04.005.CrossRefGoogle Scholar
  12. Cummins, R. (1983). The nature of psychological explanation. Cambridge: MIT Press.Google Scholar
  13. Cummins, R. (2000). “How does it work?” vs. “What are the laws?” Two conceptions of psychological explanation. In F. Keil & R. A. Wilson (Eds.), Explanation and cognition (pp. 117–145). Cambridge: MIT Press.Google Scholar
  14. Dewhurst, J. (2018). Individuation without representation. The British Journal for the Philosophy of Science, 69, 103–116.  https://doi.org/10.1093/bjps/axw018.Google Scholar
  15. Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10, 732–739.  https://doi.org/10.1016/S0959-4388(00)00153-7.CrossRefGoogle Scholar
  16. Doya, K. (2008). Modulators of decision making. Nature Neuroscience, 11, 410–416.  https://doi.org/10.1038/nn2077.CrossRefGoogle Scholar
  17. Egan, F. (2017). Function-theoretic explanation and neural mechanisms. In D. M. Kaplan (Ed.), Explanation and integration in mind and brain science (pp. 145–163). Oxford: Oxford University Press.Google Scholar
  18. Elber-Dorozko, L., & Loewenstein, Y. (2018). Striatal action-value neurons reconsidered. eLife, 7, e34248.  https://doi.org/10.7554/eLife.34248.CrossRefGoogle Scholar
  19. Fodor, J. A. (1968). Psychological explanation: An introduction to the philosophy of psychology. New York: Random House.Google Scholar
  20. Fodor, J. A. (1975). The language of thought. Cambridge: Harvard University Press.Google Scholar
  21. Fodor, J. A. (1980). Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences, 3, 63–73.  https://doi.org/10.1017/S0140525X00001771.CrossRefGoogle Scholar
  22. Fodor, J. A. (1994). The elm and the expert. Cambridge: MIT Press.Google Scholar
  23. Gillett, C. (2002). The dimensions of realization: A critique of the standard view. Analysis, 62, 316–323.  https://doi.org/10.1093/analys/62.4.316.CrossRefGoogle Scholar
  24. Gillett, C. (2016). Reduction and emergence in science and philosophy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Haimovici, S. (2013). A problem for the mechanistic account of computation. Journal of Cognitive Science, 14, 151–181.  https://doi.org/10.17791/jcs.2013.14.2.151.CrossRefGoogle Scholar
  26. Harbecke, J. (in review). The methodological role of mechanistic-computational models in cognitive science.Google Scholar
  27. Haugeland, J. (1981). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design, philosophy, psychology, artificial intelligence. Cambridge: MIT Press.Google Scholar
  28. Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1, 304–309.  https://doi.org/10.1038/1124.CrossRefGoogle Scholar
  29. Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8, 1491–1493.  https://doi.org/10.1038/nn1544.CrossRefGoogle Scholar
  30. Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177, 213–245.  https://doi.org/10.1007/s11229-010-9842-z.CrossRefGoogle Scholar
  31. Ito, M., & Doya, K. (2009). Validation of decision-making models and analysis of decision variables in the rat basal ganglia. The Journal of Neuroscience, 29, 9861–9874.  https://doi.org/10.1523/JNEUROSCI.6157-08.2009.CrossRefGoogle Scholar
  32. Ito, M., & Doya, K. (2011). Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit. Current Opinion in Neurobiology, 21, 368–373.  https://doi.org/10.1016/j.conb.2011.04.001.CrossRefGoogle Scholar
  33. Kable, J. W., & Glimcher, P. W. (2009). The neurobiology of decision: Consensus and controversy. Neuron, 63, 733–745.  https://doi.org/10.1016/j.neuron.2009.09.003.CrossRefGoogle Scholar
  34. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2013). Principles of neural science (Vol. 5). New York: McGraw-Hill.Google Scholar
  35. Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183, 339–373.  https://doi.org/10.1007/s11229-011-9970-0.CrossRefGoogle Scholar
  36. Kaplan, D. M. (2017). Neural computation, multiple realizability, and the prospects for mechanistic explanation. In D. M. Kaplan (Ed.), Explanation and integration in mind and brain science (pp. 164–189). Oxford: Oxford University Press.Google Scholar
  37. Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in neuroscience : A mechanistic perspective. Philosophy of Science, 78, 601–627.  https://doi.org/10.1086/661755.CrossRefGoogle Scholar
  38. Kim, J. (1998). Mind in a physical world. Cambridge: MIT Press.CrossRefGoogle Scholar
  39. Lange, M. (2013). What makes a scientific explanation distinctively mathematical? The British Journal for the Philosophy of Science, 64, 485–511.  https://doi.org/10.1093/bjps/axs012.CrossRefGoogle Scholar
  40. Lee, E., Seo, M., Monte, O. D., & Averbeck, B. B. (2015). Injection of a dopamine type 2 receptor antagonist into the dorsal striatum disrupts choices driven by previous outcomes, but not perceptual inference. The Journal of Neuroscience, 35, 6298–6306.  https://doi.org/10.1523/JNEUROSCI.4561-14.2015.CrossRefGoogle Scholar
  41. Li, J., & Daw, N. D. (2011). Signals in human striatum are appropriate for policy update rather than value prediction. Journal of Neuroscience, 31, 5504–5511.  https://doi.org/10.1523/JNEUROSCI.6316-10.2011.CrossRefGoogle Scholar
  42. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W. H. Freeman.Google Scholar
  43. Miłkowski, M. (2013). Explaining the computational mind. Cambridge: MIT Press.Google Scholar
  44. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2016). Human-level control through deep reinforcement learning. Nature, 518, 529–533.  https://doi.org/10.1038/nature14236.CrossRefGoogle Scholar
  45. Mongillo, G., Shteingart, H., & Loewenstein, Y. (2014). The misbehavior of reinforcement learning. Proceedings of the IEEE, 102, 528–541.  https://doi.org/10.1109/JPROC.2014.2307022.CrossRefGoogle Scholar
  46. O’Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable role of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454.  https://doi.org/10.1126/science.1094285.CrossRefGoogle Scholar
  47. Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.CrossRefGoogle Scholar
  48. Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.  https://doi.org/10.1111/cogs.12012.CrossRefGoogle Scholar
  49. Piccinini, G., & Craver, C. F. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183, 283–311.  https://doi.org/10.1007/s11229-011-9898-4.CrossRefGoogle Scholar
  50. Rathkopf, C. (2015). Network representation and complex systems. Synthese, 195, 55–78.  https://doi.org/10.1007/s11229-015-0726-0.CrossRefGoogle Scholar
  51. Rusanen, A., & Lappi, O. (2016). On computational explanations. Synthese, 193, 3931–3949.  https://doi.org/10.1007/s11229-016-1101-5.CrossRefGoogle Scholar
  52. Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation of action-specific reward values in the striatum. Science, 310, 1337–1340.  https://doi.org/10.1126/science.1115270.CrossRefGoogle Scholar
  53. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.  https://doi.org/10.1126/science.275.5306.1593.CrossRefGoogle Scholar
  54. Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153, 393–416.  https://doi.org/10.1007/s11229-006-9099-8.CrossRefGoogle Scholar
  55. Shagrir, O. (2016). Advertisement for the philosophy of the computational sciences. In P. Humphreys (Ed.), The Oxford handbook of philosophy of science (pp. 15–42). Oxford: Oxford University Press.Google Scholar
  56. Shagrir, O., & Bechtel, W. (2017). Marr’s computational level and delineating phenomena. In D. M. Kaplan (Ed.), Explanation and integration in mind and brain science (pp. 190–214). Oxford: Oxford University Press.Google Scholar
  57. Shapiro, L. A. (2017). Mechanism or bust? Explanation in psychology. The British Journal for the Philosophy of Science, 68, 1037–1059.  https://doi.org/10.1093/bjps/axv062.Google Scholar
  58. Shoemaker, S. (2001). Realization and mental causation. In C. Gillett & B. Loewer (Eds.), Physicalism and its discontents. Cambridg: Cambridge University Press.Google Scholar
  59. Shteingart, H., & Loewenstein, Y. (2014). Reinforcement learning and human behavior. Current Opinion in Neurobiology, 25, 93–98.  https://doi.org/10.1016/j.conb.2013.12.004.CrossRefGoogle Scholar
  60. Shteingart, H., Neiman, T., & Loewenstein, Y. (2013). The role of first impression in operant learning. Journal of Experimental Psychology: General, 142, 476–488.  https://doi.org/10.1037/a0029550.CrossRefGoogle Scholar
  61. Sprevak, M. (2010). Computation, individuation, and the received view on representation. Studies in History and Philosophy of Science Part A, 41, 260–270.  https://doi.org/10.1016/j.shpsa.2010.07.008.CrossRefGoogle Scholar
  62. Stich, S. (1983). From folk psychology to cognitive science: The case against belief. Cambridge: MIT Press.Google Scholar
  63. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.Google Scholar
  64. Tai, L. H., Lee, A. M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nature Neuroscience, 15, 1281–1289.  https://doi.org/10.1038/nn.3188.CrossRefGoogle Scholar
  65. Wang, A. Y., Miura, K., & Uchida, N. (2013). The dorsomedial striatum encodes net expected return, critical for energizing performance vigor. Nature Neuroscience, 16, 639–647.  https://doi.org/10.1038/nn.3377.CrossRefGoogle Scholar
  66. Watkins, C. J. C. H., & Dayan, P. (1992). Q-Learning. Machine Learning, 8, 279–292.  https://doi.org/10.1007/BF00992698.Google Scholar
  67. Weiskopf, D. A. (2011). Models and mechanisms in psychological explanation. Synthese, 183, 313–338.  https://doi.org/10.1007/s11229-011-9958-9.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.The Edmond & Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Departments of Philosophy and Cognitive ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations