Bodily structure and body representation

Abstract

This paper is concerned with representational explanations of how one experiences and acts with one’s body as an integrated whole. On the standard view, accounts of bodily experience and action must posit a corresponding representational structure: a representation of the body as an integrated whole. The aim of this paper is to show why we should instead favour the minimal view: given the nature of the body, and representation of its parts, accounts of the structure of bodily experience and action need not appeal to a representation of the body as an integrated whole. The argument proceeds by distinguishing two kinds of explanatory roles for representations: standing-in for absent targets and structuring ambiguous sensory information concerning a target. Representations of body-parts are suited to fulfil both kinds of explanatory role, whereas a representation of the body as an integrated whole is only suited to fulfil the latter, as a means of coordinating representations of body-parts. It is then argued that the structure of the body can itself serve as a means of coordinating body-part representations, rendering representation of the body as an integrated whole explanatorily superfluous.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    It should be noted that this distinction is also orthogonal to the short-term versus long-term distinction made by some (following O'Shaughnessy 1980/2008) to contrast kinds of represented spatial properties by their temporal variability.

  2. 2.

    The standard view is also assumed by neuroscientists (Berlucchi and Aglioti 1997, p. 560; Blanke 2012, p. 557; Brecht 2017, p. 991; Melzack 1990, p. 91; Petkova et al. 2011, p. 4; Serino et al. 2015, p. 11), and philosophers and neuroscientists in collaboration (Blanke and Metzinger 2009, p. 7 ff.; de Vignemont et al. 2006, p. 148). Though, of course, the degree to which non-philosophical authors are committed to what philosophers consider a viable notion of a representation is notoriously unclear.

  3. 3.

    See also the discussion of boundedness and connectedness in Bermúdez (2017, pp. 124–128). I should note that whilst Bermúdez has done more than most to illustrate the phenomena which would form the explanandum for the standard view, it is not at all clear whether his accounts of these require the notion of an integrated representation of the body (see Bermúdez 1998, Ch. 6; 2005). Bermúdez is not unique in this regard, rather it is typical of theoretical discussion concerning body representation that notion of a representation of body as an integrated whole is often, at best, implicit. Suffice to say that if theorists are tempted to endorse such a notion, I hope that my arguments will rid them of that temptation.

  4. 4.

    Indeed, with the exception of Gadsby and Williams (2018), theorists in this literature (such as Bermúdez 2005; de Vignemont 2018; Metzinger 2003; and O'Shaughnessy 1980/2008) have not provided arguments specifically designed to show that ‘body representations’ do indeed meet standard criteria for representations—let alone representations of the body as an integrated whole, which also go unmentioned in Gadsby and Williams’ (2018) discussion.

  5. 5.

    See also the discussion of metaphysical and epistemological anti-representationalist claims in Chemero (2009, pp. 67–68).

  6. 6.

    See Cummins (1989, pp. 27–34) for a discussion of why unconstrained resemblance is implausible as the basis for any general account of representation.

  7. 7.

    Thanks to a reviewer for pointing out that this assumption is rarely considered in much detail. For more on this point, see note 10 below.

  8. 8.

    I am grateful to two anonymous reviewers for noting this point.

  9. 9.

    It is, of course, rather more plausible for accounts of what figures in an individual’s understanding of the concept human body. But that is beyond the scope of the present discussion.

  10. 10.

    In addition, I would note that psychologists and neuroscientists working in this area do not typically care about whether, and, if so, how some central process of interest ought to be thought of as a representation. Rather, what they care about is whether causally intervening upon that thing’s activity affords manipulation of behaviour, and does so in a systematic fashion that reveals something about the role of that thing in generating a particular phenomenon (see e.g. Romo et al. 1998). Thus it might be plausible to say that, notwithstanding incidental use of terms such as ‘model’, many researchers in this area are not committed a structural notion of representation—what Ramsey (2007) calls ‘S-representation’—rather, they are committed to what Ramsey calls a ‘receptor’ notion of representation. This latter notion is motivated by the fact that anything sufficiently reliably correlated with (or indeed, nomically dependent upon) a specific cause can serve to represent that cause (Dretske 1981, pp. 63–82). But for many who operate with that notion, the distinction between representation and causal relay may be one without a difference, raising the question of whether the former notion is really doing explanatory work that could not be achieved in terms of the latter (Ramsey 2007, p. 142). See also Morgan (2014) for discussion.

  11. 11.

    For discussion of more sophisticated forms of this objection, and responses, see Shea (2014, pp. 132–136) and Ramsey (2007, pp. 93–96).

  12. 12.

    For an overview of these approaches, see Desmurget and Grafton (2000).

  13. 13.

    In recent years, a significant split has emerged between approaches which posit models that implement a mapping from sensory to motor signals (so called inverse models, see, e.g., Wolpert and Kawato (1998)) and those that do not, in more strict accordance with a general ‘predictive coding’ account of neural architecture (see, e.g., Shipp et al. (2013)). This difference is immaterial for the present purposes, but see Pickering and Clark (2014) for discussion.

  14. 14.

    See also the methodological variant of what Cantwell Smith (1996, pp. 50–54) refers to as an ‘inscription error’ and McDermott (1976) on ‘wishful mnemonics’.

  15. 15.

    Cf. also the discussion of ‘minimal memory strategies’ in Ballard et al. (1997, p. 732).

  16. 16.

    Henrik Ehrsson’s lab uses a similar multisensory stimulation protocol to generate a body swap illusion, see Ehrsson (2007), Petkova and Ehrsson (2008). See Blanke (2012); Serino et al. (2013) for reviews. In recent work, Andrea Serino and colleagues have pursued the hypothesis that there is a “general representation of the space around the body [to] which other smaller body-part centered representations are referenced” (Serino et al. 2015, p. 11). Though this might not be, strictly speaking, a version of the standard view, there are similar issues to be worked out here, for which see (Alsmith forthcoming).

  17. 17.

    See also Longo’s (2017, p. 86 ff.) discussion of body representations being biased towards prototypical representations of the body.

  18. 18.

    See Chemero (2009) for a notable exception.

  19. 19.

    Though, there is some variance amongst duplex theorists as to when representational explanations are explanatorily potent: cf. Hutto and Myin (2012, 2017) and Clark (1997).

References

  1. Alsmith, A. J. T. (2017). Perspectival structure and agentive self-location. In F. De Vignemont & A. Alsmith (Eds.), The subject’s matter: Self-consciousness and the body (pp. 263–288). Cambridge, MA: MIT Press.

    Google Scholar 

  2. Alsmith, A. J. T. (forthcoming). The structure of egocentric space. In F. de Vignemont, A. Serino, H. Y. Wong, & A. Farnè (Eds.), Peripersonal space. Oxford: Oxford University Press.

  3. Armstrong, D. M. (1962). Bodily sensations. London: Routledge & Kegan Paul.

    Google Scholar 

  4. Azañón, E., Tamè, L., Maravita, A., Linkenauger, S. A., Ferrè, E. R., Tajadura-Jiménez, A., et al. (2016). Multimodal contributions to body representation. Multisensory Research, 29(6–7), 635–661. https://doi.org/10.1163/22134808-00002531.

    Article  Google Scholar 

  5. Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20(4), 723–742.

    Google Scholar 

  6. Bassey, E. J. (1986). Demi-span as a measure of skeletal size. Annals of Human Biology, 13(5), 499–502.

    Google Scholar 

  7. Bayne, T. (2010). The unity of consciousness. Oxford: Oxford University Press.

    Google Scholar 

  8. Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4, 91–99.

    Google Scholar 

  9. Berlucchi, G., & Aglioti, S. (1997). The body in the brain: neural bases of corporeal awareness. Trends in Neurosciences, 20(12), 560–564.

    Google Scholar 

  10. Berlucchi, G., & Aglioti, S. (2010). The body in the brain revisited. Experimental Brain Research, 200(1), 25–35. https://doi.org/10.1007/s00221-009-1970-7.

    Article  Google Scholar 

  11. Bermúdez, J. L. (1998). The paradox of self-consciousness. Cambridge, MA: MIT Press.

    Google Scholar 

  12. Bermúdez, J. L. (2005). The phenomenology of bodily awareness. In A. L. Thomasson & D. W. Smith (Eds.), Phenomenology and philosophy of mind (pp. 295–316). Oxford: Oxford University Press.

    Google Scholar 

  13. Bermúdez, J. L. (2017). Ownership and the space of the body. In F. De Vignemont & A. Alsmith (Eds.), The subject’s matter: Self-consciousness and the body (pp. 117–143). Cambridge, MA: MIT Press.

    Google Scholar 

  14. Bhushan, N., & Shadmehr, R. (1999). Computational nature of human adaptive control during learning of reaching movements in force fields. Biological Cybernetics, 81, 39–60.

    Google Scholar 

  15. Bicchi, A., Gabiccini, M., & Santello, M. (2011). Modelling natural and artificial hands with synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1581), 3153–3161.

    Google Scholar 

  16. Blanke, O. (2012). Multisensory brain mechanisms of bodily self-consciousness. Nature Reviews Neuroscience, 13(8), 556–571.

    Google Scholar 

  17. Blanke, O., & Metzinger, T. (2009). Full-body illusions and minimal phenomenal selfhood. Trends in Cognitive Sciences, 13, 7–13.

    Google Scholar 

  18. Blanke, O., Morgenthaler, F. D., Brugger, P., & Overney, L. S. (2009). Preliminary evidence for a fronto-parietal dysfunction in able-bodied participants with a desire for limb amputation. Journal of Neuropsychology, 3, 181–200.

    Google Scholar 

  19. Bonnier, P. (1905). L’aschématie. Revue Neurologique, 13, 605–609.

    Google Scholar 

  20. Brecht, M. (2017). The body model theory of somatosensory cortex. Neuron, 94(5), 985–992. https://doi.org/10.1016/j.neuron.2017.05.018.

    Article  Google Scholar 

  21. Bremner, A. (2017). The origin of body representation. In A. Alsmith & F. De Vignemont (Eds.), The subject’s matter: Self-consciousness and the body (pp. 3–32). Cambridge, MA: MIT Press.

    Google Scholar 

  22. Brewer, B. (1995). Bodily awareness and the self. In N. Eilan, A. Marcel, & J. L. Bermúdez (Eds.), The body and the self (pp. 251–291). Cambridge, MA: MIT Press.

    Google Scholar 

  23. Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159. https://doi.org/10.1016/0004-3702(91)90053-m.

    Article  Google Scholar 

  24. Brugger, P., Kollias, S. S., Müri, R. M., Crelier, G., Hepp-Reymond, M. C., & Regard, M. (2000). Beyond re-membering: Phantom sensations of congenitally absent limbs. Proceedings of the National Academy of Sciences of the United States of America, 97, 6167–6172.

    Google Scholar 

  25. Brugger, P., Lenggenhager, B., & Giummarra, M. (2013). Xenomelia: A Social neuroscience view of altered bodily self-consciousness. Frontiers in Psychology, 4, 204. https://doi.org/10.3389/fpsyg.2013.00204.

    Article  Google Scholar 

  26. Burke, D., Hagbarth, K. E., & Löfstedt, L. (1978). Muscle spindle responses in man to changes in load during accurate position maintenance. The Journal of Physiology, 276, 159–164.

    Google Scholar 

  27. Cantwell Smith, B. (1996). On the origin of objects. Cambridge, MA: MIT Press.

    Google Scholar 

  28. Carruthers, G. (2008). Types of body representation and the sense of embodiment. Consciousness and Cognition, 17, 1302–1316.

    Google Scholar 

  29. Cartwright, R. (1975). Scattered objects. In K. Lehrer (Ed.), analysis and metaphysics (pp. 153–171). Dordrecht: Springer.

    Google Scholar 

  30. Casati, R., & Varzi, A. (1999). Parts and places: The structures of spatial representation. Cambridge, MA: MIT Press.

    Google Scholar 

  31. Chemero, T. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  32. Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, MA: MIT Press.

    Google Scholar 

  33. Clark, A., & Grush, R. (1999). Towards a cognitive robotics. Adaptive Behavior, 7(1), 5–16.

    Google Scholar 

  34. Clark, A., & Thornton, C. (1997). Trading spaces: Computation, representation, and the limits of uninformed learning. Behavioral and Brain Sciences, 20(1), 57–66.

    Google Scholar 

  35. Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101(3), 401–431. https://doi.org/10.1007/bf01063896.

    Article  Google Scholar 

  36. Cummins, R. E. (1989). Meaning and mental representation. Cambridge, MA: MIT Press.

    Google Scholar 

  37. de Vignemont, F. (2010). Body schema and body image: Pros and cons. Neuropsychologia, 48, 669–680.

    Google Scholar 

  38. de Vignemont, F. (2018). Mind the body: An exploration of bodily self-consciousness. Oxford: Oxford University Press.

    Google Scholar 

  39. de Vignemont, F., Tsakiris, M., & Haggard, P. (2006). Body mereology. In G. Knöblich, M. Thornton, M. Grosjean, & M. Shiffrar (Eds.), Human body perception from the inside out (pp. 147–170). New York: Oxford University Press.

    Google Scholar 

  40. Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431.

    Google Scholar 

  41. Di Paolo, E., Buhrmann, T., & Barandiaran, X. (2017). Sensorimotor life: An enactive proposal. Oxford: Oxford University Press.

    Google Scholar 

  42. Dretske, F. (1981). Knowledge and the flow of information. Cambridge, MA: MIT Press.

    Google Scholar 

  43. Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science, 317(5841), 1048.

    Google Scholar 

  44. Finger, S., & Hustwit, M. P. (2003). Five early accounts of phantom limb in context: Pare, Descartes, Lemos, Bell, and Mitchell. Neurosurgery, 52(3), 675–686.

    Google Scholar 

  45. First, M. B. (2005). Desire for amputation of a limb: Paraphilia, psychosis, or a new type of identity disorder. Psychological Medicine, 35(06), 919–928.

    Google Scholar 

  46. First, M. B., & Fisher, C. E. (2012). Body integrity identity disorder: The persistent desire to acquire a physical disability. Psychopathology, 45(1), 3–14.

    Google Scholar 

  47. Fodor, J., & Pylyshyn, Z. W. (1981). How direct is visual perception? Some reflections on Gibson’s ‘ecological approach’. Cognition, 9, 139–196.

    Google Scholar 

  48. Gadsby, S., & Williams, D. (2018). Action, affordances, and anorexia: Body representation and basic cognition. Synthese, 195(12), 5297–5317. https://doi.org/10.1007/s11229-018-1843-3.

    Article  Google Scholar 

  49. Gallagher, S. (1986). Body image and body schema: A conceptual clarification. Journal of Mind and Behavior, 7, 541–554.

    Google Scholar 

  50. Gallagher, S. (2005). How the body shapes the mind. Oxford: Oxford University Press.

    Google Scholar 

  51. Gallagher, S., & Meltzoff, A. N. (1996). The earliest sense of self and others: Merleau-Ponty and recent developmental studies. Philosophical Psychology, 9(2), 211–233.

    Google Scholar 

  52. Gandevia, S. C., Smith, J. L., Crawford, M., Proske, U., & Taylor, J. L. (2006). Motor commands contribute to human position sense. The Journal of Physiology, 571(3), 703–710.

    Google Scholar 

  53. Gibson, J. J. (1979/1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum.

  54. Giummarra, M. J., Bradshaw, J. L., Nicholls, M. E. R., Hilti, L. M., & Brugger, P. (2011). Body integrity identity disorder: Deranged body processing, right fronto-parietal dysfunction, and phenomenological experience of body incongruity. Neuropsychology Review, 21(4), 320–333. https://doi.org/10.1007/s11065-011-9184-8.

    Article  Google Scholar 

  55. Giummarra, M. J., Gibson, S. J., Georgiou-Karistianis, N., & Bradshaw, J. L. (2007). Central mechanisms in phantom limb perception: The past, present and future. Brain Research Reviews, 54(1), 219–232.

    Google Scholar 

  56. Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193(2), 559–582.

    Google Scholar 

  57. Goodman, N. (1969). Languages of art. Oxford: Oxford University Press.

    Google Scholar 

  58. Goodwin, G. M., McCloskey, D. I., & Matthews, P. B. (1972a). The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain, 95(4), 705–748.

    Google Scholar 

  59. Goodwin, G. M., McCloskey, D. I., & Matthews, P. B. (1972b). Proprioceptive illusions induced by muscle vibration: Contribution by muscle spindles to perception? Science, 175(28), 1382–1384.

    Google Scholar 

  60. Grush, R. (1997). The architecture of representation. Philosophical Psychology, 10(1), 5–23.

    Google Scholar 

  61. Grush, R. (2003). In defense of some ‘Cartesian’ assumptions concerning the brain and its operation. Biology and Philosophy, 18, 53–93.

    Google Scholar 

  62. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–396.

    Google Scholar 

  63. Haggard, P., & Wolpert, D. M. (2005). Disorders of body schema. In H.-J. Freund, M. Jeannerod, M. Hallett, & R. Leiguarda (Eds.), Higher-order motor disorders: From neuroanatomy and neurobiology to clinical neurology (pp. 261–272). Oxford: Oxford University Press.

    Google Scholar 

  64. Haugeland, J. (1998). Having thought: Essays in the metaphysics of mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  65. Head, H., & Holmes, G. M. (1911–1912). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.

  66. Hilti, L. M., Hänggi, J., Vitacco, D. A., Kraemer, B., Palla, A., Luechinger, R., et al. (2013). The desire for healthy limb amputation: Structural brain correlates and clinical features of xenomelia. Brain, 136(1), 318–329. https://doi.org/10.1093/brain/aws316.

    Article  Google Scholar 

  67. Hutto, D. D., & Myin, E. (2012). Radicalizing enactivism: Basic minds without content. Cambridge, MA: MIT Press.

    Google Scholar 

  68. Hutto, D. D., & Myin, E. (2017). Evolving enactivism: Basic minds meet content. Cambridge, MA: MIT Press.

    Google Scholar 

  69. Ionta, S., Heydrich, L., Lenggenhager, B., Mouthon, M., Fornari, E., Chapuis, D., et al. (2011). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron, 70(2), 363–374.

    Google Scholar 

  70. Johnson-Laird, P. N. (1983). Mental models. Harvard: Harvard University Press.

    Google Scholar 

  71. Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  72. Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57(3), 169–185.

    Google Scholar 

  73. Kinsbourne, M. (2002). The brain and body awareness. In T. F. Cash & T. Pruzinsky (Eds.), Body image: A handbook of theory, research, and clinical practice (pp. 22–39). New York: Guildford Press.

    Google Scholar 

  74. Klein, C. (forthcoming). Do we represent peripersonal space? In F. de Vignemont, A. Serino, H. Y. Wong, & A. Farnè (Eds.), Peripersonal space. Oxford: Oxford University Press.

  75. Lara, L. A. M. (2018). Explaining the felt location of bodily sensations through body representations. Consciousness and Cognition, 60, 17–24. https://doi.org/10.1016/j.concog.2018.01.007.

    Article  Google Scholar 

  76. Latash, M. (2008a). Neurophysiological basis of movement. Champaign, IL: Human Kinetics.

    Google Scholar 

  77. Latash, M. (2008b). Synergy. Oxford: Oxford University Press.

    Google Scholar 

  78. Lawrence, A. (2006). Clinical and theoretical parallels between desire for limb amputation and gender identity disorder. Archives of Sexual Behavior, 35(3), 263–278.

    Google Scholar 

  79. Lenggenhager, B., Blanke, O., & Mouthon, M. (2009). Spatial aspects of bodily self-consciousness. Consciousness and Cognition, 18, 110–117.

    Google Scholar 

  80. Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O. (2007). Video ergo sum: Manipulating bodily self-consciousness. Science, 317(5841), 1096–1099.

    Google Scholar 

  81. Longo, M. R. (2014). The effects of immediate vision on implicit hand maps. Experimental Brain Research, 232(4), 1241–1247.

    Google Scholar 

  82. Longo, M. R. (2017). Body representations and the sense of self. In A. Alsmith & F. De Vignemont (Eds.), The subject’s matter: Self-consciousness and the body (pp. 75–96). Cambridge, MA: MIT Press.

    Google Scholar 

  83. Longo, M. R., & Haggard, P. (2010). An implicit body representation underlying human position sense. Proceedings of the National Academy of Sciences, 107(26), 11727–11732.

    Google Scholar 

  84. Madden, R. (2015). The naive topology of the conscious subject. Noûs, 49(1), 55–70. https://doi.org/10.1111/nous.12002.

    Article  Google Scholar 

  85. Martin, M. G. F. (1995). Bodily awareness: A sense of ownership. In J. L. Bermúdez, A. Marcel, & N. Eilan (Eds.), The body and the self (pp. 267–289). Cambridge, MA: MIT Press.

    Google Scholar 

  86. Matthews, P. B. (1988). Proprioceptors and their contribution to somatosensory mapping; complex messages require complex processing. Canadian Journal of Physiology and Pharmacology, 66(4), 430–438.

    Google Scholar 

  87. McDermott, D. (1976). Artificial intelligence meets natural stupidity. ACM SIGART Bulletin (57), 4–9.

  88. Meltzoff, A. N., & Moore, M. K. (1983). Newborn infants imitate adult facial gestures. Child Development, 702–709.

  89. Meltzoff, A. N., & Moore, M. K. (1997). Explaining facial imitation: A theoretical model. Early Development & Parenting, 6(3–4), 179.

    Google Scholar 

  90. Melzack, R. (1990). Phantom limbs and the concept of a neuromatrix. Trends in Neurosciences, 13(3), 88–92. https://doi.org/10.1016/0166-2236(90)90179-E.

    Article  Google Scholar 

  91. Melzack, R., & Bromage, P. R. (1973). Experimental phantom limbs. Experimental Neurology, 39(2), 261–269.

    Google Scholar 

  92. Melzack, R., Israel, R., Lacroix, R., & Schultz, G. (1997). Phantom limbs in people with congenital limb deficiency or amputation in early childhood. Brain: A Journal of Neurology, 120, 1603–1620.

    Google Scholar 

  93. Merleau-Ponty, M. (1962/2002). Phenomenology of perception (C. Smith, Trans.). London: Routledge.

  94. Metzinger, T. (2003). Being no one: The self-model theory of subjectivity. Cambridge, MA: MIT Press.

    Google Scholar 

  95. Metzinger, T. (2005). Out-of-body experiences as the origin of the concept of a “soul”. Mind & Matter, 3(1), 57–84.

    Google Scholar 

  96. Metzinger, T. (2007). Empirical perspectives from the self-model theory of subjectivity: A brief summary with examples. Progress in Brain Research, 168, 215–246.

    Google Scholar 

  97. Metzinger, T. (2009). Self models. Scholarpedia, 2, 4174.

    Google Scholar 

  98. Metzinger, T. (2015). First-order embodiment, second-order embodiment, third-order embodiment. In L. A. Shapiro (Ed.), The routledge handbook of embodied cognition (pp. 272–286). New York: Routledge.

    Google Scholar 

  99. Metzinger, T., & Blanke, O. (2009). Full-body illusions and minimal phenomenal selfhood. Trends in Cognitive Sciences, 13, 7–13.

    Google Scholar 

  100. Millikan, R. G. (1993). Content and vehicle. In N. Eilan, R. McCarthy, & B. Brewer (Eds.), Spatial representation: Problems in philosophy and psychology (pp. 256–268). Oxford: Oxford University Press.

    Google Scholar 

  101. Morgan, A. (2014). Representations gone mental. Synthese, 191(2), 213–244. https://doi.org/10.1007/s11229-013-0328-7.

    Article  Google Scholar 

  102. Naito, E., Kochiyama, T., Kitada, R., Nakamura, S., Matsumura, M., Yonekura, Y., et al. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. Journal of Neuroscience, 22(9), 3683–3691.

    Google Scholar 

  103. O’Brien, G., & Opie, J. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezak (Eds.), Representation in mind: New approaches to mental representation (pp. 1–20). Amsterdam: Elsevier.

    Google Scholar 

  104. Oostenbroek, J., Suddendorf, T., Nielsen, M., Redshaw, J., Kennedy-Costantini, S., Davis, J., et al. (2016). Comprehensive longitudinal study challenges the existence of neonatal imitation in humans. Current Biology, 26(10), 1334–1338.

    Google Scholar 

  105. O’Shaughnessy, B. (1980/2008). The will: A dual aspect theory (Vol. 1). Cambridge: Cambridge University Press.

  106. O’Shaughnessy, B. (1995). Proprioception and the body image. In J. L. Bermúdez, N. Eilan, & A. J. Marcel (Eds.), The body and the self (pp. 175–203). Cambridge, MA: MIT Press.

    Google Scholar 

  107. Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization of function. New York: MacMillan.

    Google Scholar 

  108. Petkova, V. I., Björnsdotter, M., Gentile, G., Jonsson, T., Li, T.-Q., & Ehrsson, H. H. (2011). From part- to whole-body ownership in the multisensory brain. Current Biology, 21(13), 1118–1122.

    Google Scholar 

  109. Petkova, V. I., & Ehrsson, H. H. (2008). If I were you: Perceptual illusion of body swapping. PLoS ONE, 3(12), e3832. https://doi.org/10.1371/journal.pone.0003832.

    Article  Google Scholar 

  110. Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Sciences, 18(9), 451–456.

    Google Scholar 

  111. Pitcher, G. (1970). Pain perception. The Philosophical Review, 79(3), 368–393. https://doi.org/10.2307/2183934.

    Article  Google Scholar 

  112. Price, E. H. (2006). A critical review of congenital phantom limb cases and a developmental theory for the basis of body image. Consciousness and Cognition, 15(2), 310–322.

    Google Scholar 

  113. Rabin, E., & Gordon, A. M. (2006). Prior experience and current goals affect muscle-spindle and tactile integration. Experimental Brain Research, 169(3), 407–416. https://doi.org/10.1007/s00221-005-0154-3.

    Article  Google Scholar 

  114. Ramachandran, V. S., & Hirstein, W. (1998). The perception of phantom limbs. The D. O. Hebb lecture. Brain, 121(9), 1603–1630.

    Google Scholar 

  115. Ramsey, W. (1997). Do connectionist representations earn their explanatory keep? Mind and Language, 12(1), 34–66.

    Google Scholar 

  116. Ramsey, W. (2007). Representation reconsidered. Cambridge: Cambridge University Press.

    Google Scholar 

  117. Rochat, P. (2010). The innate sense of the body develops to become a public affair by 2–3 years. Neuropsychologia, 48(3), 738–745.

    Google Scholar 

  118. Romo, R., Hernández, A., Zainos, A., & Salinas, E. (1998). Somatosensory discrimination based on cortical microstimulation. Nature, 392(6674), 387–390.

    Google Scholar 

  119. Sadato, N., & Naito, E. (2004). Emulation of kinesthesia during motor imagery. Behavioral and Brain Sciences, 27(3), 412–413.

    Google Scholar 

  120. Schilder, P. (1935). The image and appearance of the human body. New York: International Universities Press.

    Google Scholar 

  121. Serino, A., Alsmith, A., Costantini, M., Mandrigin, A., Tajadura-Jimenez, A., & Lopez, C. (2013). Bodily ownership and self-location: Components of bodily self-consciousness. Consciousness and Cognition, 22(4), 1239–1252. https://doi.org/10.1016/j.concog.2013.08.013.

    Article  Google Scholar 

  122. Serino, A., Noel, J.-P., Galli, G., Canzoneri, E., Marmaroli, P., Lissek, H., et al. (2015). Body part-centered and full body-centered peripersonal space representations. Scientific Reports, 5, 18603. https://doi.org/10.1038/srep18603.

    Article  Google Scholar 

  123. Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience, 14(5), 3208.

    Google Scholar 

  124. Shea, N. (2014). VIexploitable isomorphism and structural representation. Paper presented at the Proceedings of the Aristotelian Society.

  125. Sherrington, C. (1906). The integrative action of the nervous system. New Haven, CT: Yale University Press.

    Google Scholar 

  126. Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: predictive coding in the motor cortex. Trends in Neurosciences, 36(12), 706–716.

    Google Scholar 

  127. Smith, A. J. T. (2009). Acting on (bodily) experience. Psyche, 15(1), 82–99.

    Google Scholar 

  128. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.

    Google Scholar 

  129. Stone, K. D., Keizer, A., & Dijkerman, H. C. (2018). The influence of vision, touch, and proprioception on body representation of the lower limbs. Acta Psychologica, 185, 22–32. https://doi.org/10.1016/j.actpsy.2018.01.007.

    Article  Google Scholar 

  130. Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87(3), 449–508.

    Google Scholar 

  131. Tajadura-Jiménez, A., Vakali, M., Fairhurst, M. T., Mandrigin, A., Bianchi-Berthouze, N., & Deroy, O. (2017). Contingent sounds change the mental representation of one’s finger length. Scientific Reports, 7(1), 5748. https://doi.org/10.1038/s41598-017-05870-4.

    Article  Google Scholar 

  132. Turvey, M. T., & Fonseca, S. T. (2014). The medium of haptic perception: A tensegrity hypothesis. Journal of Motor Behavior, 46(3), 143–187.

    Google Scholar 

  133. Tye, M. (2003). Consciousness and persons: Unity and identity. Cambridge, MA: MIT Press.

    Google Scholar 

  134. van Dijk, M. T., van Wingen, G. A., van Lammeren, A., Blom, R. M., de Kwaasteniet, B. P., Scholte, H. S., et al. (2013). Neural basis of limb ownership in individuals with body integrity identity disorder. PLoS ONE, 8(8), e72212. https://doi.org/10.1371/journal.pone.0072212.

    Article  Google Scholar 

  135. Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7), 345–381.

    Google Scholar 

  136. Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88(3), 638–667. https://doi.org/10.1037/0033-2909.88.3.638.

    Article  Google Scholar 

  137. Widmaier, E., Raff, H., & Strang, K. (2019). Vander’s human physiology. New York: McGraw-Hill.

    Google Scholar 

  138. Wilson, R. A. (2004). Boundaries of the mind: The individual in the fragile sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  139. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212–1217.

    Google Scholar 

  140. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.

    Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the direct support of a grant from the Volkswagen Foundation (No. 89429) and the support of the French National Research Agency to the Jean Nicod Institute (ANR-16-CE28-0015, ANR-10-LABX-0087 IEC and ANR-10-IDEX-0001-02 PSL). This article develops ideas mentioned in passing in article in the wonderful (but now deceased) journal Psyche, published under my previous name during my graduate studies (Smith 2009). One of the reviewers pressed me to at least mention this origin—given how far departed the current treatment is, this seems like the most appropriate place. I am also grateful to the editor, Catarina Dutilh Novaes, for so professionally managing a rather unusual set of circumstances compromising blind review and arranging a further three blinded reviewers for the journal, all of whom offered supportive and useful remarks. Versions of this material have been presented at various events in Berlin, Copenhagen, Düsseldorf, London, Marseilles and Tübingen. I am grateful to the organisers and members of the audience on each occasion, especially Chiara Brozzo, Glenn Carruthers, Sascha Fink, Thor Grunbaum, Patrick Haggard, Bigna Lenggenhager, Matt Longo, Thomas Metzinger and Hong Yu Wong. Especial thanks are due to Bernard Hommel for a usefully aggressive set of objections in Düsseldorf. Finally, my heartfelt thanks to Frédérique de Vignemont for her persistent encouragement and characteristic generosity in her countless insightful comments on previous versions of this material.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian J. T. Alsmith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alsmith, A.J.T. Bodily structure and body representation. Synthese 198, 2193–2222 (2021). https://doi.org/10.1007/s11229-019-02200-1

Download citation

Keywords

  • Mental representation
  • Anti-representationalism
  • Body representation
  • Body schema
  • Body image
  • Structural properties
  • Bodily sensation
  • Proprioception
  • Action
  • Phantom limb