Skip to main content

Make up your mind: octopus cognition and hybrid explanations

Abstract

In order to argue that cognitive science should be more accepting of explanatory plurality, this paper presents the control of fetching movements in the octopus as an exemplar of a cognitive process that comprises distinct and non-redundant representation-using and non-representational elements. Fetching is a type of movement that representational analyses can normally account for completely—but not in the case of the octopus. Instead, a comprehensive account of octopus fetching requires the non-overlapping use of both representational and non-representational explanatory frameworks. What this need for a pluralistic or hybrid explanation implies is that cognitive science should be more open to using both representational and non-representational accounts of cognition, depending on their respective appropriateness to the type of cognition in question.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    With the exception of the third right arm in male octopuses, which is modified to enable the transfer of sperm to females. This modification, known as hectocotylization, consists of a groove running along the entire arm through which sperm passes, and a spoon-like arm tip (Hanlon and Messenger 1996).

  2. 2.

    Often referred to interchangeably as computational motor control. The use of the term “representational” was chosen in order to avoid theoretical baggage accompanying the term “computational.”

  3. 3.

    At this point, a caveat must be issued. Such borrowing is piecemeal, and should not be interpreted as an outright commitment to or endorsement of Grush-style emulation, or to the emulation theory of representation. It is simply that aspects of these views bear convenient similarities to somatomotor representations. For present purposes, they will be assumed to be correct, as detailed adjudication would require a lengthy detour from this paper’s line of argument.

References

  1. Adams, F., & Aizawa, K. (2010). The bounds of cognition. Malden, MA: Wiley.

    Google Scholar 

  2. Anderson, R. C., Mather, J. A., Monette, M. Q., & Zimsen, S. R. M. (2010). Octopuses (Enteroctopus dofleini) recognize individual humans. Journal of Applied Animal Welfare Science, 13, 261–272.

    Google Scholar 

  3. Barsalou, L. C. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.

    Google Scholar 

  4. Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist’s challenge in cognitive science. Cognitive Science, 22(3), 295–318.

    Google Scholar 

  5. Bechtel, W. (2001). Representations: From neural systems to cognitive systems. In W. Bechtel, P. Mandik, J. Mundale, & R. S. Stufflebeam (Eds.), Philosophy and the neurosciences (pp. 332–348). MA: Blackwell Publishers.

    Google Scholar 

  6. Brooks, R. A. (1991). Intelligence without representation. In R. A. Brooks (Ed.), Cambrian intelligence: The early history of the New AI (pp. 79–101). Cambridge, MA: Bradford Books.

    Google Scholar 

  7. Chemero, A. (2011). Radical embodied cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  8. Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401–431.

    Google Scholar 

  9. Edelman, S. (2003). But will it scale up? Not without representations. Adaptive Behavior, 11(4), 273–275.

    Google Scholar 

  10. Finn, J. K., Tregenza, T., & Norman, M. D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19(23), R1069–R1070.

    Google Scholar 

  11. Flash, T., & Sejnowski, T. J. (2001). Computational approaches to motor control. Current Opinion in Neurobiology, 11(6), 655–662.

    Google Scholar 

  12. Fodor, J. A. (1975). The language of thought. New York: Thomas Y. Crowell Company.

    Google Scholar 

  13. Fodor, J. A. (1981). Representations. Cambridge, MA: MIT Press.

    Google Scholar 

  14. Godfrey-Smith, P. (2013). Cephalopods and the evolution of the mind. Pacific Conservation Biology, 19(1), 4–9.

    Google Scholar 

  15. Godfrey-Smith, P. (2016). Other minds. New York: Farrar, Straus and Giroux.

    Google Scholar 

  16. Graziadei, P. (1971). The nervous system of the arms. The anatomy of the nervous system of octopus vulgaris (pp. 45–61). Oxford: Clarendon Press.

    Google Scholar 

  17. Grush, R. (2001). The architecture of representation. In W. Bechtel, P. Mandik, J. Mundale, & R. S. Stufflebeam (Eds.), Philosophy and the neurosciences (pp. 349–368). MA: Blackwell Publishers.

    Google Scholar 

  18. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–442.

    Google Scholar 

  19. Gutfreund, Y., Flash, T., Yarom, Y., Fiorito, G., Segev, I., & Hochner, B. (1996). Organization of octopus arm movements: A model system for studying the control of flexible arms. The Journal of Neuroscience, 16(22), 7297–7307.

    Google Scholar 

  20. Gutfreund, Y., Flash, T., Fiorito, G., & Hochner, B. (1998). Patterns of arm muscle activation involved in octopus reaching movements. The Journal of Neuroscience, 18(15), 5976–5987.

    Google Scholar 

  21. Gutnick, T., Byrne, R. A., Hochner, B., & Kuba, M. (2011). Octopus vulgaris uses visual information to determine the location of its arm. Current Biology, 21, 460–462.

    Google Scholar 

  22. Hanlon, R. T., & Messenger, J. B. (1996). Cephalopod behaviour. Great Britain: Cambridge University Press.

    Google Scholar 

  23. Haselager, P., de Groot, A., & van Rappard, H. (2003). Representationalism vs. anti-representationalism: A debate for the sake of appearance. Philosophical Psychology, 16(1), 5–23.

    Google Scholar 

  24. Haugeland, J. (1991). Representational genera. In J. Haugeland (Ed.), Having thought (pp. 171–206). Cambridge, MA: Harvard University Press.

    Google Scholar 

  25. Hochner, B. (2004). Octopus nervous system. In G. Adelman & B. H. Smith (Eds.), Encyclopedia of neuroscience (3rd ed.). Amseterdam: Elsevier B.V.

    Google Scholar 

  26. Hvorecny, L. M., Grudowski, J. L., Blakeslee, C. J., Simmons, T. L., Roy, P. R., Brooks, J. A., et al. (2007). Octopuses (Octopus bimaculoides) and Cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Animal Cognition, 10, 449–459.

    Google Scholar 

  27. Kier, W. M., & Smith, K. K. (1985). Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society, 83(4), 307–324.

    Google Scholar 

  28. Levy, G., Nesher, N., Zullo, L., & Hochner, B. (2017). Motor control in soft-bodied animals: The octopus. In J. H. Byrne (Ed.), The Oxford handbook of invertebrate neurobiology. Oxford: Oxford Handbooks Online.

    Google Scholar 

  29. Millikan, R. G. (1995). Pushmi–Pullyu representations. Philosophical Perspectives, 9, 185–200.

    Google Scholar 

  30. Richter, J. N., Hochner, B., & Kuba, M. J. (2015). Octopus arm movements under constrained conditions: Adaptation, modification and plasticity of motor primitives. Journal of Experimental Biology, 218, 1069–1076.

    Google Scholar 

  31. Rowell, C. H. F. (1963). Excitatory and inhibitory pathways in the arm of octopus. Journal of Experimental Biology, 40, 257–270.

    Google Scholar 

  32. Rowell, C. H. F. (1966). Activity of interneurones in the arm of octopus in response to tactile stimulation. Journal of Experimental Biology, 44, 589–605.

    Google Scholar 

  33. Shapiro, L. (2011). Embodied cognition. New York: Routledge.

    Google Scholar 

  34. Sterelny, K. (1995). Basic minds: AI, connectionism, and philosophical psychology. Philosophical Perspectives, 9, 251–270.

    Google Scholar 

  35. Sumbre, G., Fiorito, G., Flash, T., & Hochner, B. (2005). Motor control of flexible octopus arms. Nature, 433, 595–596.

    Google Scholar 

  36. Sumbre, G., Fiorito, G., Flash, T., & Hochner, B. (2006). Octopuses use a human-like strategy to control precise point-to-point arm movements. Current Biology, 16, 767–772.

    Google Scholar 

  37. Sumbre, G., Yoram Gutfreund, G., Fiorito, T. F., & Hochner, B. (2001). Control of octopus arm extension by a peripheral motor program. Science, 293, 1845–1848.

    Google Scholar 

  38. Thelen, E., Schöner, G., Scheier, C., & Smith, L. B. (2001). The dynamics of embodiment: A field theory of infant perseverative reaching. Behavioral and Brain Sciences, 24, 1–34.

    Google Scholar 

  39. Tricarico, E., Borrelli, L., Gherardi, F., & Fiorito, G. (2011). I know my neighbour: Individual recognition in octopus vulgaris. PLoS ONE, 6(4), 1–9.

    Google Scholar 

  40. van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 91(7), 345–381.

    Google Scholar 

  41. Wells, M. J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. London: Chapman and Hall.

    Google Scholar 

  42. Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1(6), 209–216.

    Google Scholar 

  43. Zullo, L., Sumbre, G., Agnisola, C., Flash, T., & Hochner, B. (2009). Nonsomatotopic organization of the higher motor centers in octopus. Current Biology, 19, 1632–1636.

    Google Scholar 

  44. Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 238–263.

    Google Scholar 

Download references

Acknowledgements

I am grateful to the following people for their comments and feedback: Glenn Carruthers, Emily C. Parke, Iván Gonzalez-Cabrera, and the anonymous reviewers of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sidney Carls-Diamante.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carls-Diamante, S. Make up your mind: octopus cognition and hybrid explanations. Synthese 199, 143–158 (2021). https://doi.org/10.1007/s11229-019-02102-2

Download citation

Keywords

  • Hybrid explanations
  • Explanatory pluralism
  • Octopus cognition