pp 1–18 | Cite as

Complementarity in information studies

  • Liqian Zhou


The principle of complementarity in physics can be generalized and extended to information studies. It helps explain the dilemma faced by information studies today. The prevailing endeavor that going beyond the limitation of formal theories and to develop a unified theory of information falls in the dilemma which is structurally homologous to the dilemmas in quantum physics. The dilemma is caused by an epistemological paradox called assignment paradox. The paradox can be removed through generalized complementarity. It means that the concept of information embodying in different theoretical contexts are different phenomenon. They are complementary to each other. The analysis brings bad news to methodologically reductionism and fundamentalism but good news to transdisciplinary approach.


Information Unified theory of information Complementarity Assignment paradoxes Transdisciplinary approach 



I thank anonymous referees for their insightful critiques and suggestions which improve the paper substantially. The paper is supported by China Postdoctoral Science Foundation Grant 2017M611789.


  1. Barbour, I. G. (1966). Issues in science and religion. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  2. Bar-Hillel, Y. (1955). An examination of information theory. Philosophy of Science, 22(2), 86–105.CrossRefGoogle Scholar
  3. Bar-Hillel, Y. & Carnap, R. (1953). An outline of a theory of semantic information. Reprinted in Bar-Hillel, Y. (1964). Language and information: Selected essays on their theory and application (pp. 221–274). Reading, MA: Addison-Wesley.Google Scholar
  4. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge, MA: MIT Press.Google Scholar
  5. Bateson, G. (1972). Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology. Chicago, Illinois: University of Chicago Press.Google Scholar
  6. Bateson, G. (1979). Mind and nature: A necessary unity. Hampton: Hampton Press.Google Scholar
  7. Bedau, H., & Oppenheim, P. (1961). Complementarity in quantum physics. Synthese, 13(3), 201–232.CrossRefGoogle Scholar
  8. Bohr, N. (1937). Causality and complementarity. Philosophy of Science IV, 3, 289–298.CrossRefGoogle Scholar
  9. Brier, S. (2008). Cybersemiotics: Why information is not enough. Toronto, Ontario: University of Toronto Press.Google Scholar
  10. Brier, S. (2015). Finding an information concept suited for a universal theory of information? Progress in Biophysics & Molecular Biology, 119(3), 622–633.CrossRefGoogle Scholar
  11. Brody, N., & Oppenheim, P. (1969). Applications of Bohr’s principle of complementarity to the mind–body problem. The Journal of Philosophy, 66, 97–113.CrossRefGoogle Scholar
  12. Burgin, M. (2010). Theory of information: Fundamentality, diversity and unification. Singapore: World Scientific.Google Scholar
  13. Carnap, R., & Bar-Hillel, Y. (1952). Semantic information. The British Journal for the Philosophy of Science, 4(14), 147–157.Google Scholar
  14. Cashman, T. (2008). What connects the map to the territory. In M. Barbieri & J. Hoffmyer (Eds.), A legacy for living systems: Gregory Bateson as precursor to biosemiotics (pp. 45–58). New York: Springer.CrossRefGoogle Scholar
  15. Chaitin, G. J. (1987). Algorithmic information theory. New York: Cambridge University Press.CrossRefGoogle Scholar
  16. Chalmers, D. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.Google Scholar
  17. Chalmers, D. (1996). The conscious mind: In search of a fundamental theory. Oxford: Oxford University Press.Google Scholar
  18. Collier, J. (1996). Information originates in symmetry breaking. Symmetry: Culture & Science, 7, 247–256.Google Scholar
  19. Collier, J. (2003). Hierarchical dynamical information system with a focus on biology. Entropy, 5, 102.CrossRefGoogle Scholar
  20. Collier, J. (2015). What must the world be like to have information about it? In Proceedings of summit of international society for information science. Austria: Bertalanffy Center for System Science Studies, Technology University of Vienna.Google Scholar
  21. Deacon, T. (2007). Shannon–Boltzmann–Darwin: Redefining information. Part 1. Cognitive Semiotics, 1, 123–148.CrossRefGoogle Scholar
  22. Deacon, T. (2008). Shannon–Boltzmann–Darwin: Redefining information. Part 2. Cognitive Semiotics, 2, 167–194.CrossRefGoogle Scholar
  23. Deacon, T. (2010). What is missing from information. In P. Davies & N. Gregersen (Eds.), Information and the nature of reality: From physics to metaphysics. Cambridge: Cambridge University Press.Google Scholar
  24. Deacon, T. (2012). Incomplete nature: How mind emerged from matter. New York: W. W. Nordon & Company.Google Scholar
  25. Deacon, T. (2015). Steps to a theory of reference & significance in information. FIS discussion paper, September.Google Scholar
  26. Dodig Crnkovic, G. (2011). Dynamics of information as natural computation. Information, 2(3), 460–477.CrossRefGoogle Scholar
  27. Dretske, F. (1981). Knowledge and the flow of information. Oxford: Blackwell; reprinted, Stanford, CA: CSLI Publications, 1999.Google Scholar
  28. Fisher, R. A. (1925). Theory of statistical estimation. Proceedings Cambridge Philosophical Society, 22(5), 700–725.CrossRefGoogle Scholar
  29. Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds and Machines, 14(2), 197–222.CrossRefGoogle Scholar
  30. Floridi, L. (2005/2015) Semantic conceptions of information. In E. N. Zalta (Eds.), The Stanford encyclopedia of philosophy (Spring 2014 Edn).
  31. Floridi, L. (2010). Information: A very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  33. Frege, G. (1892/1993). On sense and reference. In P. Geach & M. Black (Eds.), Translations from the philosophical writings of Gottlob Frege (pp. 56–78). Oxford: Basil Blackwell, 1960.Google Scholar
  34. Gregersen, N. (2010). God, matter, and information: Towards a stoicizing logos christology. In P. Davies & N. Gregersen (Eds.), Information and the nature of reality: From physics to metaphysics. Cambridge: Cambridge University Press.Google Scholar
  35. Hofkirchner, W. (Ed.). (1999). The quest for a unified theory of information. Amsterdam: Gordon and Breach.Google Scholar
  36. Hofkirchner, W. (2013). Emergent information: A unified information framework. Singapore: World Scientific.CrossRefGoogle Scholar
  37. Husserl, E. (1936). The crisis of European science and transcendental phenomenology (D. E. Carr, Trans and introduction). Evanston: Northwesterm University Press. (1970).Google Scholar
  38. Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1), 1–7.Google Scholar
  39. Lindenberg, S., & Oppenheim, P. (1974). Generalization of complementarity. Synthese, 28, 117–139.CrossRefGoogle Scholar
  40. Mackay, D. M. (1969). Information, mechanism and meaning. Cambridge: MIT Press.Google Scholar
  41. Penrose, O. (1970). Foundations of statistical mechanics: A deductive treatment. Oxford: Pergamon Press.Google Scholar
  42. Schmidhuber, J. (1997). A computer scientist’s view of life, the universe, and everything. In C. Freksa (Ed.), Foundations of computer science: Potential-theory-cognition (pp. 201–208)., Lecture notes in computer science Berlin: Springer.CrossRefGoogle Scholar
  43. Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.CrossRefGoogle Scholar
  44. Solomonoff, R. J. (1964a). A formal theory of inductive inference, part I. Information and Control, 7(1), 1–22.CrossRefGoogle Scholar
  45. Solomonoff, R. J. (1964b). A formal theory of inductive inference, part II. Information and Control, 7(2), 224–254.CrossRefGoogle Scholar
  46. Stonier, T. (1997). Information and meaning: An evolutionary perspective. New York: Springer.CrossRefGoogle Scholar
  47. von Neumann, J. (1955). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.Google Scholar
  48. von Stillfried, N. (2010). Theoretical and Empirical Explorations of “Generalized Quantum Theory”. Eingereicht an der Kulturwissenschaftlichen Fakultät der, Europa-Universität Viadrina. Frankfurt an der Oder.Google Scholar
  49. Weaver, W. (1949). Recent contributions to the mathematical theory of communication. In C. Shannon & W. Weaver (Eds.), The mathematical theory of communication. Urbana: The University of Illinois Press.Google Scholar
  50. Wheeler, J. A. (1989). Information, physics, quantum: The search for links. In W. Zurek (Ed.), Complexity, entropy, and the physics of information. Redwood City, CA: Addison-Wesley.Google Scholar
  51. Wolframe, S. (2002). A new kind of science. Champaign: Wolframe Media, Inc.Google Scholar
  52. Wu, K. (2005). Information philosophy: Theory, system and methods [信息哲学:理论、系统与方法]. Beijing: The Commercial Press.Google Scholar
  53. Zhong, Y. X. (2017). the law of information conversion and intelligence creation. In M. Burgin & W. Hofkirchner (Eds.), Information studies and the quest for transdisciplinarity: Unity through diversity. Singapore: World Scientific.Google Scholar
  54. Zhou, L. Q., & Brier, S. (2015). The metaphysics of Chinese information philosophy: A critical analysis of WuKun’s philosophy of information. Cybernetics & Human Knowing, 22(1), 35–56.Google Scholar
  55. Zuse, K. (1967). Rechnender Raum. Elektronische Datenverarbeitung, 8, 336–344.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhilosophyNanjing UniversityNanjingChina

Personalised recommendations