Skip to main content

Intensional biases in affordance perception: an explanatory issue for radical enactivism

Abstract

Radical Enactivism holds that the best explanation of basic forms of cognition is provided without involving information of any sort. According to this view, the ability to perceive visual affordances should be accounted for in terms of extensional covariations between variables spanning the agent’s body and the environment. Contrary to Radical Enactivism, I argue that the intensional properties of cognition cannot be ignored, and that the way in which an agent represents the world has consequences on the explanation of basic sensorimotor abilities. To support this claim, I show that the perception of visual affordances is not segregated from higher forms of cognition; rather, it is modulated by the agent’s ability to recognize the semantic identity of the visual target. Accordingly, since the semantic recognition of an object involves a way of representing it under a certain description, it can be inferred that the perception of visual affordances cannot be accounted for without considering the intensional properties of cognition. This poses an explanatory issue for Radical Enactivism.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    It should be noted that, at least prima facie, this view resembles that of Gibson (1979), according to which action opportunities or affordances do not depend on the animal's categorization and intention to act (p. 134). However, it is important to note that the agreement between Gibson’s ecological psychology and RE concerns only the non-representational nature of internal cognition, whereas they diverge regarding the existence of environmental information. Notably, Gibson (1979) and his fellows (e.g., Turvey et al. 1981) have stated that the agent’s actions are guided by the information in the environment, but not in the brain, whereas radical enactivists deny any presence of information in the brain and environment. I’m grateful to an anonymous reviewer for bringing this relevant distinction to my attention.

  2. 2.

    Mathematical tools of DST have been adopted in several naturalistic disciplines, including physics, biology, neuroscience, and behavioral psychology (e.g., Guastello and Gregson 2011).

  3. 3.

    It should be noted that this view involves endorsing a metaphysical approach to scientific explanation, according to which only metaphysically true statements can be genuine explanations (e.g. Psillos 2005).

  4. 4.

    This paper mainly focuses on the explanatory thesis underlying RE and does not address the HPC. In doing this, I agree with Chemero (2011), according to which, the explanatory and the ontological problems of RE can be addressed independently of one another.

  5. 5.

    It should be noted that, here I am not interested in taking a position on the vexed question of the penetrability of vision by semantic competences. For the sake of the present argument, it is enough to show that vision for action is significantly biased by higher categorization abilities. For the debate concerning the cognitive penetration of vision for action see for example Nanay (2013), Burnston (2016) and Toribio (2018).

  6. 6.

    Someone might be concerned with the use of reverse inference in cognitive neuroscience. Typically, cognitive neuroscientists have concluded that a psychological process is involved in an experimental task because a particular pattern of neural activation is elicited during the task. The main concern with reverse inference is that it is a fallacy when conceived as an instance of a conclusive reasoning such as a deduction. It should be noted, however, that reverse inference as intended here is a heuristic instrument that allows the formulation of empirical hypotheses. Contrary to the view that brain activation patterns are weak indicators of the presence of cognitive processes (e.g., Poldrack 2008, 2011; Fox and Friston 2012), the heuristic value of reverse inference can be secured by means of a suitable meta-analysis that complements it. Meta-analyses provide a fine-grained comparison among the available evidence concerning the correlation between neural events and psychological events associated with the execution of a specific task. Accordingly, reverse inference can be considered predictively reliable insofar as it is supported by a suitable meta-analysis. (e.g. Hutzler 2014; Nathan and Pinal 2017; Machery 2014). Notably, Sect. 4 of this paper presents a row meta-analysis of this sort. For more detailed meta-analyses concerning the interactions between semantic and visuomotor capacities, see for example Zipoli Caiani and Ferretti (2017), Briscoe and Schwenkler (2015), Brogaard (2011) and Schenk and McIntosh (2010).

  7. 7.

    In line with this view, Gadsby and Williams (2018) have recently argued that, at present, non-representational model of cognition cannot account for the evidence concerning the behavioral anomalies of patients suffering from anorexia nervosa. Differently, the same set of evidence can be accommodated within a representational framework by means of the notion of body schema (e.g., De Vignemont 2014).

  8. 8.

    This conclusion can be extended to other varieties of the enactivist view only insofar as they rely on a non-representational approach to vision for action. Notably, since evidence show that affordance perception is shaped by the agent’s categorization competences, it seems reasonable to hypothesize that the interlocking between vision and action can be accounted for by attributing content and categorization abilities.

References

  1. Ambrosini, E., Scorolli, C., Borghi, A. M., & Costantini, M. (2012). Which body for embodied cognition? Affordance and language within actual and perceived reaching space. Consciousness and Cognition, 21(3), 1551–1557.

    Article  Google Scholar 

  2. Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge: Bradford Books.

    Book  Google Scholar 

  3. Balduzzi, D., & Tononi, G. (2008). Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Computational Biology, 4(6), e1000091. https://doi.org/10.1371/journal.pcbi.1000091.

    Article  Google Scholar 

  4. Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91–99.

    Article  Google Scholar 

  5. Bellebaum, C., Tettamanti, M., Marchetta, E., Della Rosa, P., Rizzo, G., Daum, I., et al. (2013). Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 49(4), 1110–1125. https://doi.org/10.1016/j.cortex.2012.03.023.

    Article  Google Scholar 

  6. Borghi, A. M. (forthcoming). Affordances, context and sociality. Synthese.

  7. Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2015.00351.

    Article  Google Scholar 

  8. Borra, E., Ichinohe, N., Sato, T., Tanifuji, M., & Rockland, K. S. (2010). Cortical connections to area TE in monkey: Hybrid modular and distributed organization. Cerebral Cortex (New York, N.Y.: 1991), 20(2), 257–270. https://doi.org/10.1093/cercor/bhp096.

    Article  Google Scholar 

  9. Briscoe, R. (2009). Egocentric spatial representation in action and perception. Philosophy and Phenomenological Research, 79(2), 423–460.

    Article  Google Scholar 

  10. Briscoe, R., & Schwenkler, J. (2015). Conscious vision in action. Cognitive Science, 39(7), 1435–1467.

    Article  Google Scholar 

  11. Brogaard, B. (2011). Conscious vision for action versus unconscious vision for action? Cognitive Science, 35, 1076–1104.

    Article  Google Scholar 

  12. Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599. https://doi.org/10.3389/fnhum.2014.00599.

    Article  Google Scholar 

  13. Burnston, D. (2016). Cognitive penetration and the cognition–perception interface. Synthese. https://doi.org/10.1007/s11229-016-1116-y.

    Article  Google Scholar 

  14. Caligiore, D., Borghi, A. M., Parisi, D., Ellis, R., Cangelosi, A., & Baldassarre, G. (2013). How affordances associated with a distractor object affect compatibility effects: A study with the computational model TRoPICALS. Psychological Research, 77(1), 7–19. https://doi.org/10.1007/s00426-012-0424-1.

    Article  Google Scholar 

  15. Carello, C., Grosofsky, A., Reichel, F. D., Solomon, H. Y., & Turvey, M. T. (1989). Visually perceiving what is reachable. Ecological Psychology, 1, 27–54. https://doi.org/10.1207/s15326969eco0101_3.

    Article  Google Scholar 

  16. Carey, D. P., Harvey, M., & Milner, A. D. (1996). Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia, 34(5), 329–337.

    Article  Google Scholar 

  17. Carnap, R. (1955). Meaning and synonymy in natural languages. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 6(3), 33–47.

    Article  Google Scholar 

  18. Carnap, R. (1960). The methodological character of theoretical concepts. Journal of Symbolic Logic, 25(1), 71–74.

    Article  Google Scholar 

  19. Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. NeuroImage, 12(4), 478–484. https://doi.org/10.1006/nimg.2000.0635.

    Article  Google Scholar 

  20. Chemero, A. (2011). Radical embodied cognitive science., Bradford Cambridge: MIT Press.

    Google Scholar 

  21. Chemero, T., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science, 75(1), 1–27.

    Article  Google Scholar 

  22. Chinellato, E., & del Pobil, A. P. (2016). The neuroscience of action and perception. In E. Chinellato, A. P. del Pobil (Eds.), The visual neuroscience of robotic grasping (pp. 7–38). Cham: Springer. https://doi.org/10.1007/978-3-319-20303-4_2.

    Chapter  Google Scholar 

  23. Chow, J. Y., Davids, K., Button, C., & Renshaw, I. (2015). Nonlinear pedagogy in skill acquisition: An introduction (1st ed.). London: Routledge.

    Book  Google Scholar 

  24. Cisek, P. (2007). Cortical mechanisms of action selection: the affordances competition hypothesis. Philosophical Transaction of the Royal Society B, 362, 1585–1599.

    Article  Google Scholar 

  25. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298. https://doi.org/10.1146/annurev.neuro.051508.135409.

    Article  Google Scholar 

  26. Cohen, N. R., Cross, E. S., Tunik, E., Grafton, S. T., & Culham, J. C. (2009). Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach. Neuropsychologia, 47(6), 1553–1562. https://doi.org/10.1016/j.neuropsychologia.2008.12.034.

    Article  Google Scholar 

  27. Colombo, M. (2014). Neural representationalism, the hard problem of content and vitiated verdicts. A reply to Hutto & Myin. Phenomenology and the Cognitive Sciences, 13(2), 257–274.

    Article  Google Scholar 

  28. Constable, M. D., Kritikos, A., & Bayliss, A. P. (2011). Grasping the concept of personal property. Cognition, 119(3), 430–437.

    Article  Google Scholar 

  29. Constable, M. D., Kritikos, A., Lipp, O. V., & Bayliss, A. P. (2014). Object ownership and action: The influence of social context and choice on the physical manipulation of personal property. Experimental Brain Research, 232(12), 3749–3761.

    Article  Google Scholar 

  30. Costantini, M., Ambrosini, E., Scorolli, C., & Borghi, A. M. (2011). When objects are close to me: Affordances in the peripersonal space. Psychonomic Bulletin & Review, 18(2), 302–308. https://doi.org/10.3758/s13423-011-0054-4.

    Article  Google Scholar 

  31. Creem-Regehr, S. H., & Lee, J. N. (2005). Neural representations of graspable objects: Are tools special? Brain Research. Cognitive Brain Research, 22(3), 457–469. https://doi.org/10.1016/j.cogbrainres.2004.10.006.

    Article  Google Scholar 

  32. Davids, K., Button, C., & Bennett, S. (2007). Dynamics of skill acquisition: A constraints-led approach. Champaign: Human Kinetics.

    Google Scholar 

  33. De Caro, M., & Macarthur, D. (Eds.). (2008). Naturalism in question. Cambridge: Harvard University Press.

    Google Scholar 

  34. De Vignemont, F. (2014). A multimodal conception of bodily awareness. Mind, 123(492), 989–1020.

    Article  Google Scholar 

  35. Di Paolo, E. D. (2009). Extended life. Topoi, 28(1), 9–21.

    Article  Google Scholar 

  36. de Wit, M. M., de Vries, S., van der Kamp, J., & Withagen, R. (2017). Affordances and neuroscience: Steps towards a successful marriage. Neuroscience and Biobehavioral Reviews, 80, 622–629. https://doi.org/10.1016/j.neubiorev.2017.07.008.

    Article  Google Scholar 

  37. Dennett, D. C. (1987). The intentional stance. Cambridge: MIT Press.

    Google Scholar 

  38. Dijkerman, H. C., McIntosh, R. D., Schindler, I., Nijboer, T. C. W., & Milner, A. D. (2009). Choosing between alternative wrist postures: Action planning needs perception. Neuropsychologia, 47(6), 1476–1482. https://doi.org/10.1016/j.neuropsychologia.2008.12.002.

    Article  Google Scholar 

  39. Dretske, F. (1981). Knowledge and the flow of information. Cambridge: MIT Press.

    Google Scholar 

  40. Ellis, R., Tucker, M., Symes, E., & Vainio, L. (2007). Does selecting one visual object from several require inhibition of the actions associated with nonselected objects? Journal of Experimental Psychology. Human Perception and Performance, 33(3), 670–691. https://doi.org/10.1037/0096-1523.33.3.670.

    Article  Google Scholar 

  41. Favela, L. H. (2014). Radical embodied cognitive neuroscience: Addressing “grand challenges” of the mind sciences. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2014.00796.

    Article  Google Scholar 

  42. Ferretti, G. (2016). Pictures, action properties and motor related effects. Synthese, Special Issue: Neuroscience and Its Philosophy, 193(12), 3787–3817.

    Google Scholar 

  43. Ferretti, G. (2017). Two visual systems in Molyneux Subjects. Phenomenology and the Cognitive Sciences, 17(4), 643–679.

    Article  Google Scholar 

  44. Ferretti, G. (2018). The neural dynamics of seeing-in. Erkenntnis. https://doi.org/10.1007/s10670-018-0060-2.

    Article  Google Scholar 

  45. Floridi, L. (2017). A plea for non-naturalism as constructionism. Minds and Machines, 27(2), 269–285. https://doi.org/10.1007/s11023-017-9422-9.

    Article  Google Scholar 

  46. Fodor, J. A. (1980). The language of thought (1st ed.). Cambridge: Harvard University Press.

    Google Scholar 

  47. Fox, P. T., & Friston, K. J. (2012). Distributed processing; distributed functions? NeuroImage, 61(2), 407–426. https://doi.org/10.1016/j.neuroimage.2011.12.051.

    Article  Google Scholar 

  48. Fuchs, A., & Jirsa, V. K. (Eds.). (2008). Coordination: Neural, behavioral and social dynamics. Berlin: Springer. https://doi.org/10.1007/978-3-540-74479-5.

    Book  Google Scholar 

  49. Gadsby, S., & Williams, D. (2018). Action, affordances, and anorexia: Body representation and basic cognition. Synthese, 195, 5297. https://doi.org/10.1007/s11229-018-1843-3.

    Article  Google Scholar 

  50. Gallagher, S. (2017). Enactivist interventions: Rethinking the mind (1st ed.). Oxford: Oxford University Press.

    Book  Google Scholar 

  51. Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1988). Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Experimental Brain Research, 71(3), 475–490.

    Article  Google Scholar 

  52. Gibson, J. J. (1979). The ecological approach to visual perception (Classic ed.). London: Psychology Press.

    Google Scholar 

  53. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. https://doi.org/10.1016/0166-2236(92)90344-8

    Article  Google Scholar 

  54. Guastello, S., & Gregson, R. (2011). Nonlinear dynamical systems analysis for the behavioral sciences using real data. Books by Marquette University Faculty. Recuperato da. http://epublications.marquette.edu/marq_fac-book/48.

  55. Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356. https://doi.org/10.1007/BF00336922.

    Article  Google Scholar 

  56. Harrison, H. S., Turvey, M. T., & Frank, T. D. (2016). Affordance-based perception-action dynamics: A model of visually guided braking. Psychological Review, 123(3), 305–323. https://doi.org/10.1037/rev0000029.

    Article  Google Scholar 

  57. Heft, H. (2001). Ecological psychology in context: James Gibson, Roger Barker, and the legacy of William James’s radical empiricism (1st ed.). Mahwah: Psychology Press.

    Book  Google Scholar 

  58. Heinke, D. (2000). A dynamical system theory approach to cognitive neuroscience. Behavioral and Brain Sciences, 23(4), 543.

    Article  Google Scholar 

  59. Himmelbach, M., & Karnath, H.-O. (2005). Dorsal and ventral stream interaction: Contributions from optic ataxia. Journal of Cognitive Neuroscience, 17(4), 632–640. https://doi.org/10.1162/0898929053467514.

    Article  Google Scholar 

  60. Hornsby, J. (2001). Simple mindedness: In defense of naive naturalism in the philosophy of mind. Cambridge: Harvard University Press.

    Google Scholar 

  61. Horst, S. (2009). Naturalisms in philosophy of mind. Philosophy Compass, 4(1), 219–254. https://doi.org/10.1111/j.1747-9991.2008.00191.x.

    Article  Google Scholar 

  62. Horst, S. (2011). Symbols, computation, and intentionality. Berkeley: University of California Press.

    Google Scholar 

  63. Hoshi, E., & Tanji, J. (2007). Distinctions between dorsal and ventral premotor areas: Anatomical connectivity and functional properties. Current Opinion in Neurobiology, 17(2), 234–242. https://doi.org/10.1016/j.conb.2007.02.003.

    Article  Google Scholar 

  64. Hutto, D. D., & Myin, E. (2012). Radicalizing enactivism: Basic minds without content. Cambridge: MIT Press.

    Book  Google Scholar 

  65. Hutto, D. D., & Myin, E. (2017). Evolving enactivism: Basic minds meet content. Cambridge: MIT Press.

    Book  Google Scholar 

  66. Hutzler, F. (2014). Reverse inference is not a fallacy per se: Cognitive processes can be inferred from functional imaging data. NeuroImage, 84, 1061–1069. https://doi.org/10.1016/j.neuroimage.2012.12.075.

    Article  Google Scholar 

  67. Jacob, P., & De Vignemont, F. (2010). Spatial coordinates and phenomenology in the two visual systems model. In N. Gangopadhyay, M. Madary, & F. Spicer (Eds.), Perception, action and consciousness. Oxford: Oxford University Press.

    Google Scholar 

  68. Jacob, P., & Jeannerod, M. (2003). Ways of seeing: The scope and limits of visual cognition. Oxford: Oxford University Press.

    Book  Google Scholar 

  69. Jeannerod, M., Decety, J., & Michel, F. (1994). Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia, 32(4), 369–380.

    Article  Google Scholar 

  70. Jiang, Y., & Mark, L. S. (1994). The effect of gap depth on the perception of whether a gap is crossable. Perception and Psychophysics, 56(6), 691–700.

    Article  Google Scholar 

  71. Kalénine, S., Shapiro, A. D., Flumini, A., Borghi, A. M., & Buxbaum, L. J. (2014). Visual context modulates potentiation of grasp types during semantic object categorization. Psychonomic Bulletin & Review, 21(3), 645–651. https://doi.org/10.3758/s13423-013-0536-7.

    Article  Google Scholar 

  72. Kiefer, M., Sim, E.-J., Liebich, S., Hauk, O., & Tanaka, J. (2007). Experience-dependent plasticity of conceptual representations in human sensory-motor areas. Journal of Cognitive Neuroscience, 19(3), 525–542. https://doi.org/10.1162/jocn.2007.19.3.525.

    Article  Google Scholar 

  73. Kim, S., & Frank, T. D. (2016). Body-scaled perception is subjected to adaptation when repetitively judging opportunities for grasping. Experimental Brain Research, 234(9), 2731–2743. https://doi.org/10.1007/s00221-016-4677-6.

    Article  Google Scholar 

  74. Lee, C., Middleton, E., Mirman, D., Kalénine, S., & Buxbaum, L. J. (2013). Incidental and context-responsive activation of structure- and function-based action features during object identification. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 257–270. https://doi.org/10.1037/a0027533.

    Article  Google Scholar 

  75. Loh, M., Rolls, E. T., & Deco, G. (2007). A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology, 3(11), e228. https://doi.org/10.1371/journal.pcbi.0030228.

    Article  Google Scholar 

  76. Lopresti-Goodman, S. M., Turvey, M. T., & Frank, T. D. (2011). Behavioral dynamics of the affordance «graspable». Attention, Perception, & Psychophysics, 73(6), 1948–1965. https://doi.org/10.3758/s13414-011-0151-5.

    Article  Google Scholar 

  77. Lopresti-Goodman, S. M., Turvey, M. T., & Frank, T. D. (2013). Negative hysteresis in the behavioral dynamics of the affordance «graspable». Attention, Perception, & Psychophysics, 75(5), 1075–1091. https://doi.org/10.3758/s13414-013-0437-x.

    Article  Google Scholar 

  78. Machery, E. (2014). In defense of reverse inference. The British Journal for the Philosophy of Science, 65(2), 251–267. https://doi.org/10.1093/bjps/axs044.

    Article  Google Scholar 

  79. Makris, S., Hadar, A. A., & Yarrow, K. (2013). Are object affordances fully automatic? A case of covert attention. Behavioral Neuroscience, 127(5), 797–802. https://doi.org/10.1037/a0033946.

    Article  Google Scholar 

  80. Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 361–370.

    Google Scholar 

  81. Mark, L. S., & Vogele, D. (1987). A biodynamic basis for perceived categories of action: A study of sitting and stair climbing. Journal of Motor Behavior, 19(3), 367–384.

    Article  Google Scholar 

  82. Maturana, H. R., & Varela, F. J. (1991). Autopoiesis and cognition: The realization of the living. Berlin: Springer.

    Google Scholar 

  83. Mcculloch, W. S., & Pitts, W. (1944). A logical calculus of the ideas immanent in nervous activity. Journal of Symbolic Logic, 9(2), 49–50.

    Article  Google Scholar 

  84. McDowell, J. H. (1996). Mind and world. Cambridge: Harvard University Press.

    Book  Google Scholar 

  85. McIntosh, R. D., & Schenk, T. (2009). Two visual streams for perception and action: Current trends. Neuropsychologia, 47(6), 1391–1396. https://doi.org/10.1016/j.neuropsychologia.2009.02.009.

    Article  Google Scholar 

  86. Millikan, R. (1989). Biosemantics. The Journal of Philosophy, 86(6), 281–297.

    Article  Google Scholar 

  87. Milner, A. D., Perrett, D. I., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W., et al. (1991). Perception and action in «visual form agnosia». Brain: A Journal of Neurology, 114(Pt 1B), 405–428.

    Article  Google Scholar 

  88. Nanay, B. (2013). Is action-guiding vision cognitively impenetrable? In Proceedings of the 35th annual conference of the cognitive science society (CogSci 2013) (pp. 1055–1060). Hillsdale, NJ: Lawrence Erlbaum.

  89. Nathan, M. J., & Pinal, G. D. (2017). The future of cognitive neuroscience? Reverse inference in focus. Philosophy Compass, 12(7), e12427. https://doi.org/10.1111/phc3.12427.

    Article  Google Scholar 

  90. Noë, A. (2004). Action in perception. Cambridge: MIT Press.

    Google Scholar 

  91. O’Regan, J. K. (2011). Why red doesn’t sound like a bell: Understanding the feel of consciousness. Oxford: Oxford University Press.

    Book  Google Scholar 

  92. O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. The Behavioral and Brain Sciences, 24(5), 939–973; discussion 973–1031.

    Article  Google Scholar 

  93. Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107(1), 179–217. https://doi.org/10.1016/j.cognition.2007.09.003.

    Article  Google Scholar 

  94. Papineau, D. (1987). Reality and representation. Oxford: Blackwell.

    Google Scholar 

  95. Pellicano, A., Thill, S., Ziemke, T., & Binkofski, F. (2011). Affordances, adaptive tool use and grounded cognition. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2011.00053.

    Article  Google Scholar 

  96. Poil, S.-S., van Ooyen, A., & Linkenkaer-Hansen, K. (2008). Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations. Human Brain Mapping, 29(7), 770–777. https://doi.org/10.1002/hbm.20590.

    Article  Google Scholar 

  97. Poldrack, R. A. (2008). The role of fMRI in cognitive neuroscience: Where do we stand? Current Opinion in Neurobiology, 18(2), 223–227. https://doi.org/10.1016/j.conb.2008.07.006.

    Article  Google Scholar 

  98. Psillos, S. (2005). Scientific realism: How science tracks truth. Abingdon: Routledge.

    Book  Google Scholar 

  99. Pylyshyn, Z. (2003). Seeing and visualizing: It’s not what you think. Cambridge: MIT Press.

    Book  Google Scholar 

  100. Raftoupolus, A. (2009). Cognition and perception. How do psychology and neural science. Cambridge: MIT Press.

    Google Scholar 

  101. Ramstead, M. J. D., Veissière, S. P. L., & Kirmayer, L. J. (2016). Cultural affordances: Scaffolding local worlds through shared intentionality and regimes of attention. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2016.01090.

    Article  Google Scholar 

  102. Raos, V., Umiltá, M.-A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95(2), 709–729. https://doi.org/10.1152/jn.00463.2005.

    Article  Google Scholar 

  103. Rietveld, E. (2008). Special section: The skillful body as a concernful system of possible actions: Phenomena and neurodynamics. Theory & Psychology, 18(3), 341–363. https://doi.org/10.1177/0959354308089789.

    Article  Google Scholar 

  104. Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26(4), 325–352. https://doi.org/10.1080/10407413.2014.958035.

    Article  Google Scholar 

  105. Rowe, P. J., Haenschel, C., Kosilo, M., & Yarrow, K. (2017). Objects rapidly prime the motor system when located near the dominant hand. Brain and Cognition, 113, 102–108. https://doi.org/10.1016/j.bandc.2016.11.005.

    Article  Google Scholar 

  106. Schenk, T., & McIntosh, R. D. (2010). Do we have independent visual streams for perception and action? Cognitive Neuroscience, 1(1), 52–62. https://doi.org/10.1080/17588920903388950.

    Article  Google Scholar 

  107. Schindler, I., Rice, N. J., McIntosh, R. D., Rossetti, Y., Vighetto, A., & Milner, A. D. (2004). Automatic avoidance of obstacles is a dorsal stream function: Evidence from optic ataxia. Nature Neuroscience, 7(7), 779–784. https://doi.org/10.1038/nn1273.

    Article  Google Scholar 

  108. Searle, J. R. (1983). Intentionality: An essay in the philosophy of mind. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  109. Spivey, M. (2008). The continuity of mind. Oxford: Oxford University Press.

    Google Scholar 

  110. Stark, E., Asher, I., & Abeles, M. (2007). Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site. Journal of Neurophysiology, 97(5), 3351–3364. https://doi.org/10.1152/jn.01328.2006.

    Article  Google Scholar 

  111. Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: An integrative review. Neuroscience and Biobehavioral Reviews, 37(3), 491–521. https://doi.org/10.1016/j.neubiorev.2013.01.012.

    Article  Google Scholar 

  112. Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. Cambridge: Harvard University Press.

    Google Scholar 

  113. Tipper, S. P., Paul, M. A., & Hayes, A. E. (2006). Vision-for-action: The effects of object property discrimination and action state on affordance compatibility effects. Psychonomic Bulletin & Review, 13(3), 493–498.

    Article  Google Scholar 

  114. Toribio, J. (2018). Are visuomotor representations cognitively penetrable? Biasing action-guiding vision. Synthese. https://doi.org/10.1007/s11229-018-1854-0.

    Article  Google Scholar 

  115. Turvey, M. T., Shaw, R. E., Reed, E. S., & Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9(3), 237–304.

    Article  Google Scholar 

  116. van Dijk, L., & Rietveld, E. (2016). Foregrounding sociomaterial practice in our understanding of affordances: The skilled intentionality framework. Frontiers in Psychology, 7, 1969. https://doi.org/10.3389/fpsyg.2016.01969.

    Article  Google Scholar 

  117. van Gelder, T. (1995). What might cognition be if not computation? Journal of Philosophy, 92(7), 345–381.

    Article  Google Scholar 

  118. Vingerhoets, G. (2008). Knowing about tools: Neural correlates of tool familiarity and experience. NeuroImage, 40(3), 1380–1391. https://doi.org/10.1016/j.neuroimage.2007.12.058.

    Article  Google Scholar 

  119. Vingerhoets, G., Acke, F., Vandemaele, P., & Achten, E. (2009). Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements. NeuroImage, 47(4), 1832–1843. https://doi.org/10.1016/j.neuroimage.2009.05.100.

    Article  Google Scholar 

  120. Walmsley, J. (2008). Explanation in dynamical cognitive science. Minds and Machines, 18(3), 331–348.

    Article  Google Scholar 

  121. Ward, D., Silverman, D., & Villalobos, M. (2017). Introduction: The varieties of enactivism. Topoi An International Review of Philosophy, 36, 365. https://doi.org/10.1007/s11245-017-9484-6.

    Article  Google Scholar 

  122. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683–703.

    Google Scholar 

  123. Withagen, R., de Poel, H. J., Araújo, D., & Pepping, G.-J. (2012). Affordances can invite behavior: Reconsidering the relationship between affordances and agency. New Ideas in Psychology, 30(2), 250–258. https://doi.org/10.1016/j.newideapsych.2011.12.003.

    Article  Google Scholar 

  124. Zgaljardic, D. J., Yancy, S., Levinson, J., Morales, G., & Masel, B. E. (2011). Balint’s syndrome and post-acute brain injury rehabilitation: A case report. Brain Injury, 25(9), 909–917. https://doi.org/10.3109/02699052.2011.585506.

    Article  Google Scholar 

  125. Zipoli Caiani, S. (2014). Extending the notion of affordance. Phenomenology and the Cognitive Sciences, 13(2), 275–293. https://doi.org/10.1007/s11097-013-9295-1.

    Article  Google Scholar 

  126. Zipoli Caiani, S. (2017). When the affordances disappear: Dynamical and computational explanations of optic ataxia. Theory & Psychology, 2(5), 663–682. https://doi.org/10.1177/0959354317722867.

    Article  Google Scholar 

  127. Zipoli Caiani, S., & Ferretti, G. (2017). Semantic and pragmatic integration in vision for action. Consciousness and Cognition, 48, 40–54. https://doi.org/10.1016/j.concog.2016.10.009.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the audience of the biannual conference of the Italian Society for Analytic Philosophy held in September 2018, and Gabriele Ferretti for comments and suggestions. I’m also grateful to the two anonymous reviewers for allowing me to improve the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvano Zipoli Caiani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zipoli Caiani, S. Intensional biases in affordance perception: an explanatory issue for radical enactivism. Synthese 198, 4183–4203 (2021). https://doi.org/10.1007/s11229-018-02049-w

Download citation

Keywords

  • Visual affordance
  • Intensionality
  • Basic cognition
  • Radical enactivism