Achille, A., & Soatto, S. (2017). Emergence of invariance and disentangling in deep representations. arXiv Preprint arXiv:1706.01350.
Antonelli, G. A. (2010). Notions of invariance for abstraction principles. Philosophia Mathematica,
18(3), 276–292.
Article
Google Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences,
22, 577–660.
Google Scholar
Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences,
36(2), 421–441.
Article
Google Scholar
Berkeley, G. (1710/1982). A treatise concerning the principles of human knowledge. Indianapolis: Hackett. (Original work published in 1710).
Beth, E. W. (1957). Uber lockes “Allgemeines Dreieck”. Kant-Studien,
1(48), 361–380.
Google Scholar
Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z., et al. (2016). Model-free episodic control. arXiv Preprint arXiv:1606.04460.
Boone, W., & Piccinini, G. (2016). Mechanistic abstraction. Philosophy of Science,
83(5), 686–697.
Article
Google Scholar
Botvinick, M., Barrett, D. G., Battaglia, P., de Freitas, N., Kumaran, D., Leibo, J. Z., et al. (2017). Building machines that learn and think for themselves. Behavioral and Brain Sciences, 40, 26–28.
Article
Google Scholar
Boyd, R. (1999). Kinds, complexity and multiple realization. Philosophical Studies,
95(1–2), 67–98.
Article
Google Scholar
Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence,
47(1–3), 139–159.
Article
Google Scholar
Buckner, C. (2011). Two approaches to the distinction between cognition and “mere association”. International Journal of Comparative Psychology,
24(4), 314–348.
Google Scholar
Buckner, C. (2015). Functional kinds: A skeptical look. Synthese,
192(12), 3915–3942.
Article
Google Scholar
Buckner, C., & Garson, J. (2018). Connectionism: Roots, revolution, and radiation. In M. Sprevak & M. Columbo (Eds.), The Routledge handbook of the computational mind. New York: Routledge.
Google Scholar
Camp, E. (2015). Logical concepts and associative characterizations. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 591–621). Cambridge: MIT Press.
Google Scholar
Chatterjee, A. (2010). Disembodying cognition. Language and Cognition,
2(1), 79–116.
Article
Google Scholar
Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT press.
Google Scholar
Clark, A. (1989). Microcognition: Philosophy, cognitive science, and parallel distributed processing (Vol. 6). Cambridge: MIT Press.
Google Scholar
Craver, C., & Kaplan, D. M. (2018). Are more details better? On the norms of completeness for mechanistic explanations. The British Journal for the Philosophy of Science, axy015.
https://doi-org.ezproxy.lib.uh.edu/10.1093/bjps/axy015.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems,
2(4), 303–314.
Article
Google Scholar
DeMers, D., & Cottrell, G. W. (1993). Non-linear dimensionality reduction. In S. J. Hanson, J. D. Cowan & C. L. Giles (Eds.), Advances in neural information processing systems (NIPS) 5 (pp. 580–587). San Mateo: Morgan Kaufmann.
Google Scholar
DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in Cognitive Sciences,
11(8), 333–341. https://doi.org/10.1016/j.tics.2007.06.010.
Article
Google Scholar
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron,
73(3), 415–434.
Article
Google Scholar
Dosovitskiy, A., Springenberg, J. T., & Brox, T. (2015). Learning to generate chairs with convolutional neural networks. In 2015 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1538–1546). https://doi.org/10.1109/CVPR.2015.7298761.
Elsayed, G. F., Shankar, S., Cheung, B., Papernot, N., Kurakin, A., Goodfellow, I., & Sohl-Dickstein, J. (2018). Adversarial examples that fool both human and computer vision. arXiv Preprint arXiv:1802.08195.
Fukushima, K. (1979). Neural network model for a mechanism of pattern recognition unaffected by shift in position-Neocognitron. IEICE Technical Report, A,
62(10), 658–665.
Google Scholar
Fukushima, K. (2003). Neocognitron for handwritten digit recognition. Neurocomputing,
51, 161–180.
Article
Google Scholar
Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. Cambridge: MIT press.
Google Scholar
Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2414–2423).
Gauker, C. (2011). Words and images: An essay on the origin of ideas. Oxford: OUP.
Book
Google Scholar
Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science,
69(S3), S342–S353.
Article
Google Scholar
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Book in preparation for MIT Press. http://www.deeplearningbook.org.
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv Preprint arXiv:1412.6572.
Gray, H. (1918). Anatomy of the human body, rev. and re-edited by Warren H. Lewis. Philadelphia: Lea & Febiger.
Google Scholar
Grósz, T., & Nagy, I. (2014). Document classification with deep rectifier neural networks and probabilistic sampling. In Proceedings of the international conference on text, speech, and dialogue (pp. 108–115). Cham: Springer.
Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature,
405(6789), 947.
Article
Google Scholar
Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron,
95(2), 245–258.
Article
Google Scholar
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science,
313(5786), 504–507.
Article
Google Scholar
Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis for Technische Universität München, München.
Hong, H., Yamins, D. L., Majaj, N. J., & DiCarlo, J. J. (2016). Explicit information for category-orthogonal object properties increases along the ventral stream. Nature neuroscience, 19(4), 613.
Article
Google Scholar
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks,
4(2), 251–257.
Article
Google Scholar
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology,
160(1), 106–154.
Article
Google Scholar
Hume, D. (1739). A treatise on human nature. Oxford: Oxford University Press.
Google Scholar
Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science,
78(4), 601–627.
Article
Google Scholar
Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Computational Biology,
10(11), e1003915. https://doi.org/10.1371/journal.pcbi.1003915.
Article
Google Scholar
Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences,
20(7), 512–534.
Article
Google Scholar
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, E253.
Article
Google Scholar
Laurence, S., & Margolis, E. (2012). Abstraction and the origin of general ideas. Philosopher’s Imprint,
12(19), 1–22.
Google Scholar
Laurence, S., & Margolis, E. (2015). Concept nativism and neural plasticity. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 117–147). Cambridge: MIT Press.
Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436–444.
Article
Google Scholar
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4), 541–551.
Article
Google Scholar
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems (pp. 396–404).
Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science,
80(2), 241–261.
Article
Google Scholar
Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random synaptic feedback weights support error backpropagation for deep learning. Nature Communications. https://doi.org/10.1038/ncomms13276.
Google Scholar
Luc, P., Neverova, N., Couprie, C., Verbeek, J., & LeCun, Y. (2017). Predicting deeper into the future of semantic segmentation. In IEEE international conference on computer vision (ICCV) (Vol. 1).
Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science,
67(1), 1–25.
Article
Google Scholar
Machery, E. (2009). Doing without concepts. Oxford: Oxford University Press.
Book
Google Scholar
Marcus, G. (2018). Deep learning: A critical appraisal. arXiv:1801.00631 [cs, Stat].
McClelland, J. L. (1988). Connectionist models and psychological evidence. Journal of Memory and Language,
27(2), 107–123.
Article
Google Scholar
McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in cognitive sciences, 14(8), 348–356.
Article
Google Scholar
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv Preprint arXiv:1312.5602.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529.
Article
Google Scholar
Montúfar, G. F., Pascanu, R., Cho, K., & Bengio, Y. (2014). On the number of linear regions of deep neural networks. In Advances in neural information processing systems (pp. 2924–2932).
Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and checkerboard artifacts. Distill,
1(10), e3.
Article
Google Scholar
Patel, A. B., Nguyen, M. T., & Baraniuk, R. (2016). A probabilistic framework for deep learning. In Advances in Neural Information Processing Systems (pp. 2558–2566).
Perry, C. J., & Fallah, M. (2014). Feature integration and object representations along the dorsal stream visual hierarchy. Frontiers in Computational Neuroscience,
8, 84. https://doi.org/10.3389/fncom.2014.00084.
Article
Google Scholar
Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese,
183(3), 283–311.
Article
Google Scholar
Priebe, N. J., Mechler, F., Carandini, M., & Ferster, D. (2004). The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nature Neuroscience,
7(10), 1113.
Article
Google Scholar
Quine, W. V. (1971). Epistemology naturalized. Akten Des XIV. Internationalen Kongresses Für Philosophie,
6, 87–103.
Google Scholar
Rajalingham, R., Issa, E. B., Bashivan, P., Kar, K., Schmidt, K., & DiCarlo, J. J. (2018). Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. bioRxiv, 240614.
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031.
Article
Google Scholar
Ritter, S., Barrett, D. G., Santoro, A., & Botvinick, M. M. (2017). Cognitive psychology for deep neural networks: A shape bias case study. arXiv Preprint arXiv:1706.08606.
Rogers, T. T., & McClelland, J. L. (2014). Parallel distributed processing at 25: Further explorations in the microstructure of cognition. Cognitive Science,
38(6), 1024–1077. https://doi.org/10.1111/cogs.12148.
Article
Google Scholar
Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization (pp. 27–48). Hillsdale, NJ: Erlbaum.
Google Scholar
Scellier, B., & Bengio, Y. (2017). Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in Computational Neuroscience,
11, 24. https://doi.org/10.3389/fncom.2017.00024.
Article
Google Scholar
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,
61, 85–117.
Article
Google Scholar
Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational neuroscience. Science,
241(4871), 1299–1306.
Article
Google Scholar
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587), 484–489. https://doi.org/10.1038/nature16961.
Article
Google Scholar
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature,
550(7676), 354.
Article
Google Scholar
Singhal, H. (2017). Convolutional neural network with TensorFlow implementation. Retrieved September 7, 2018, from https://medium.com/data-science-group-iitr/building-a-convolutional-neural-network-in-python-with-tensorflow-d251c3ca8117.
Spasojević, S. S., Šušić, M. Z., & DJurović, Ž. M. (2012). Recognition and classification of geometric shapes using neural networks. In 2012 11th symposium on neural network applications in electrical engineering (NEUREL) (pp. 71–76). IEEE.
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv Preprint arXiv:1412.6806. Retrieved from https://arxiv.org/abs/1412.6806
Stinson, C. (2016). Mechanisms in psychology: ripping nature at its seams. Synthese,
193(5), 1585–1614.
Article
Google Scholar
Stinson, C. (2017). Back to the cradle: Mechanism schemata from piaget to DNA. In M. Adams, Z. Biener, U. Feest, & J. Sullivan (Eds.), Eppur si muove: Doing history and philosophy of science with Peter Machamer (pp. 183–194). Cham: Springer.
Chapter
Google Scholar
Stinson, C. (2018). Explanation and connectionist models. In M. Colombo & M. Sprevak (Eds.), The Routledge handbook of the computational mind. New York, NY: Routledge.
Google Scholar
Vidyasagar, T. R. (2013). Reading into neuronal oscillations in the visual system: implications for developmental dyslexia. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2013.00811.
Google Scholar
Weiskopf, D. A. (2011a). Models and mechanisms in psychological explanation. Synthese,
183(3), 313.
Article
Google Scholar
Weiskopf, D. A. (2011b). The functional unity of special science kinds. The British Journal for the Philosophy of Science,
62(2), 233–258.
Article
Google Scholar
Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience,
19(3), 356.
Article
Google Scholar
Ylikoski, P., & Kuorikoski, J. (2010). Dissecting explanatory power. Philosophical Studies,
148(2), 201–219.
Article
Google Scholar
Yu, C., & Smith, L. B. (2011). What you learn is what you see: using eye movements to study infant cross-situational word learning. Developmental Science,
14(2), 165–180.
Article
Google Scholar