Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909–4917.
Google Scholar
Amalric, M., & Dehaene, S. (2018). Cortical circuits for mathematical knowledge: Evidence for a major subdivision within the brain’s semantic networks. Philosophical Transactions of the Royal Society B, 373(1740), 20160515.
Google Scholar
Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioural and Brain Sciences, 33(4), 245–266.
Google Scholar
Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT Press.
Google Scholar
Anderson, M. L. (2016). Précis of after phrenology: Neural reuse and the interactive brain. Behavioral and Brain Sciences, 39, 1–45.
Google Scholar
Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563–576.
Google Scholar
Anobile, G., Cicchini, G. M., & Burr, D. C. (2016). Number as a primary perceptual attribute: A review. Perception, 45(1–2), 5–31.
Google Scholar
Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.
Google Scholar
Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. NeuroReport, 16(16), 1769–1773.
Google Scholar
Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382–2393.
Google Scholar
Badcock, P. B., Ploeger, A., & Allen, N. B. (2016). After phrenology: Time for a paradigm shift in cognitive science. Behavioral and Brain Sciences, 39, 10–11.
Google Scholar
Beck, J. (2014). Analogue magnitude representations: A philosophical introduction. The British Journal for the Philosophy of Science, 66(4), 829–855.
Google Scholar
Bruineberg, J., Kiverstein, J., & Rietveld, E. (2018). The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective. Synthese, 195(6), 2417–2444.
Google Scholar
Burge, T. (2010). Origins of objectivity. Oxford: Oxford University Press.
Google Scholar
Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10((6), 20), 1–10.
Google Scholar
Butterworth, B., Reeve, R., Reynolds, F., & Lloyd, D. (2008). Numerical thought with and without words: Evidence from indigenous Australian children. Proceedings of the National Academy of Sciences, 105(35), 13179–13184.
Google Scholar
Cain, C. (2006). Implications of the Marked Artefacts of the Middle Stone Age of Africa. Current Anthropology, 47(4), 675–681.
Google Scholar
Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.
Google Scholar
Carreiras, M., Monahan, P. J., Lizarazu, M., Duñabeitia, J. A., & Molinaro, N. (2015). Numbers are not like words: Different pathways for literacy and numeracy. Neuroimage, 118, 79–89.
Google Scholar
Chen, F., Hu, Z., Zhao, X., Wang, R., Yang, Z., Wang, X., et al. (2006). Neural correlates of serial abacus mental calculation in children: A functional MRI study. Neuroscience Letters, 403(1–2), 46–51.
Google Scholar
Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1485), 1585–1599.
Google Scholar
Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.
Google Scholar
Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11(2), 157–163.
Google Scholar
De Cruz, H. (2006). Towards a Darwinian approach to mathematics. Foundations of Science, 11(1–2), 157–196.
Google Scholar
De Cruz, H. (2008). An extended mind perspective on natural number representation. Philosophical Psychology, 21(4), 475–490.
Google Scholar
De Cruz, H. (2012). How do spatial representations enhance cognitive numerical processing? Cognitive Processing, 13(1), 137–140.
Google Scholar
Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.
Google Scholar
Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In S. Dehaene, J.-R. Duhamel, M. D. Hauser, & G. Rizolatti (Eds.), From monkey brain to human brain (pp. 133–157). Cambridge, MA: MIT Press.
Google Scholar
Dehaene, S. (2009). Reading in the brain: The new science of how we read. New York, NY: Penguin.
Google Scholar
Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83–120.
Google Scholar
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398.
Google Scholar
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.
Google Scholar
Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626.
Google Scholar
Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic—An fMRI study. Cognitive Brain Research, 18(1), 76–88.
Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.
Google Scholar
Fields, R. D. (2009). The other brain: From dementia to schizophrenia, how new discoveries about the brain are revolutionizing medicine and science. New York, NY: Simon and Schuster.
Google Scholar
Fischer, M. H., & Fias, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York, NY: Psychology Press.
Google Scholar
Fröhlich, F., & McCormick, D. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67, 129–143.
Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.
Google Scholar
Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain, 134(6), 1694–1709.
Google Scholar
Gilmore, C., McCarthy, S., & Spelke, E. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406.
Google Scholar
Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306(5695), 496–499.
Google Scholar
Grefkes, C., & Fink, G. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207(1), 3–17.
Google Scholar
Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstätter, F., Benke, T., Felber, S., et al. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30(4), 1365–1375.
Google Scholar
Jones, M. (2016a). Number concepts for the concept empiricist. Philosophical Psychology, 29(3), 334–348.
Google Scholar
Jones, M. (2016b). Review of After phrenology: Neural reuse and the interactive brain. Philosophical Psychology, 29(7), 1080–1083.
Google Scholar
Jones, M. (2018). Seeing numbers as affordances. In S. Bangu (Ed.), Naturalizing logico-mathematical knowledge: Approaches from philosophy, psychology and cognitive science (pp. 148–163). New York, NY: Routledge.
Google Scholar
Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513–549.
Google Scholar
Kitcher, P. (1984). The nature of mathematical knowledge. Oxford: Oxford University Press.
Google Scholar
Kramer, S., & McChesney, A. (2003). Writing, notational iconicity, calculus: On writing as a cultural technique. MLN, 118(3), 518–537.
Google Scholar
Laland, K. N., Odling-Smee, J., & Feldman, M. W. (2000). Niche construction, biological evolution, and cultural change. Behavioral and Brain Sciences, 23(1), 131–146.
Google Scholar
Landy, D., & Goldstone, R. L. (2009). How much of symbolic manipulation is just symbol pushing. In Proceedings of the thirty-first annual conference of the cognitive science society, Amsterdam, Netherlands, July 29–August 1 (pp. 1072–1077).
Libertus, M., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300.
Google Scholar
Longcamp, M., Lagarrigue, A., Nazarian, B., Roth, M., Anton, J. L., Alario, F. X., et al. (2014). Functional specificity in the motor system: Evidence from coupled fMRI and kinematic recordings during letter and digit writing. Human Brain Mapping, 35(12), 6077–6087.
Google Scholar
Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: Evidence against a strong association between symbols and the quantities they represent. Journal of Experimental Psychology: General, 141(4), 635–641.
Google Scholar
McClelland, T. (2017). AI and affordances for mental action. In J. Bryson , M. De Vos, & J. Padget J (Eds.) Proceedings of AISB Annual Convention 2017 (pp. 372–379). http://aisb2017.cs.bath.ac.uk/conference-edition-proceedings.pdf.
Menary, R. (2006). Attacking the bounds of cognition. Philosophical Psychology, 19(3), 329–344.
Google Scholar
Menary, R. (2007). Cognitive integration: Mind and cognition unbounded. Basingstoke: Palgrave Macmillan.
Google Scholar
Menary, R. (2014). Neuronal recycling, neural plasticity and niche construction. Mind and Language, 29(3), 286–303.
Google Scholar
Menary, R. (2015). Mathematical cognition: A case of enculturation. In T. Metzinger & J. M. Windt (Eds.), OpenMIND. Frankfurt am Main: MIND Group.
Google Scholar
Menary, R., & Gillett, A. (2016). Embodying culture: Integrated cognitive systems and cultural evolution. In J. Kiverstein (Ed.), The Routledge handbook of philosophy of the social mind (pp. 72–88). New York, NY: Routledge.
Google Scholar
Nieder, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6(3), 177–190.
Google Scholar
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208.
Google Scholar
Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton, NJ: Princeton University Press.
Google Scholar
Park, J., Hebrank, A., Polk, T. A., & Park, D. C. (2012). Neural dissociation of number from letter recognition and its relationship to parietal numerical processing. Journal of Cognitive Neuroscience, 24(1), 39–50.
Google Scholar
Paz, A. W. (2018). A defense of an Amodal number system. Philosophies, 3(2), 13.
Google Scholar
Penner-Wilger, M., & Anderson, M. L. (2013). The relation between finger gnosis and mathematical ability: Why redeployment of neural circuits best explains the finding. Frontiers in Psychology, 4, 877.
Google Scholar
Pezzulo, G., & Cisek, P. (2016). Navigating the affordance landscape: Feedback control as a process model of behavior and cognition. Trends in Cognitive Sciences, 20(6), 414–424.
Google Scholar
Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305.
Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503.
Google Scholar
Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26(4), 325–352.
Google Scholar
Saxe, G. B. (1982). Culture and the development of numerical cognition: Studies among the Oksapmin of Papua New Guinea. In C. J. Brainerd (Ed.), Children’s logical and mathematical cognition (pp. 157–176). New York, NY: Springer.
Google Scholar
Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., et al. (2013). A brain area for visual numerals. Journal of Neuroscience, 33(16), 6709–6715.
Google Scholar
Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475–487.
Google Scholar
Spelke, E. S., & Tsivkin, S. (2001). Language and number: A bilingual training study. Cognition, 78(1), 45–88.
Google Scholar
Tang, Y., Zhang, W., Kewel, C., Feng, S., Ji, Y., et al. (2006). Arithmetic processing in the brain shaped by cultures. PNAS, 103(28), 10775–10780.
Google Scholar
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.
Google Scholar
Wiese, H. (2003). Iconic and non-iconic stages in number development: The role of language. Trends in Cognitive Sciences, 7(9), 385–390.
Google Scholar
Zhang, J., & Norman, D. (1995). A representational analysis of numeration systems. Cognition, 5(3), 271–295.
Google Scholar