Advertisement

Synthese

pp 1–28 | Cite as

The variety-of-evidence thesis: a Bayesian exploration of its surprising failures

  • François Claveau
  • Olivier Grenier
S.I.: Evidence Amalgamation in the Sciences

Abstract

Diversity of evidence is widely claimed to be crucial for evidence amalgamation to have distinctive epistemic merits. Bayesian epistemologists capture this idea in the variety-of-evidence thesis: ceteris paribus, the strength of confirmation of a hypothesis by an evidential set increases with the diversity of the evidential elements in that set. Yet, formal exploration of this thesis has shown that it fails to be generally true. This article demonstrates that the thesis fails in even more circumstances than recent results would lead us to expect. Most importantly, it can fail whatever the chance that the evidential sources are unreliable. Our results hold for two types of degrees of variety: reliability independence and testable aspect independence. We conclude that the variety-of-evidence thesis can, at best, be interpreted as an exception-prone rule of thumb.

Keywords

Evidence amalgamation Bayesian epistemology Evidence variety Evidence independence Robustness Triangulation 

References

  1. Bovens, L., & Hartmann, S. (2002). Bayesian networks and the problem of unreliable instruments. Philosophy of Science, 69(1), 29–72.CrossRefGoogle Scholar
  2. Bovens, L., & Hartmann, S. (2003). Bayesian epistemology. Oxford: Oxford University Press.Google Scholar
  3. Claveau, F. (2013). The independence condition in the variety-of-evidence thesis. Philosophy of Science, 80(1), 94–118.CrossRefGoogle Scholar
  4. Dowle, M., Short, T., Srinivasan, S. L. W. C. F. A., & Saporta, R. (2013). Data.table: Extension of data.frame for fast indexing, fast ordered joins, fast assignment, fast grouping and list columns. R package version 1.8.10.Google Scholar
  5. Downward, P., & Mearman, A. (2007). Retroduction as mixed-methods triangulation in economic research: Reorienting economics into social science. Cambridge Journal of Economics, 31(1), 77–99.CrossRefGoogle Scholar
  6. Earman, J. (1992). Bayes or bust?: A critical examination of Bayesian confirmation theory. Cambridge: MIT Press.Google Scholar
  7. Højsgaard, S. (2012). Graphical independence networks with the gRain package for R. Journal of Statistical Software, 46(1), 1–26.Google Scholar
  8. Howson, C., & Urbach, P. (1993). Scientific reasoning: The Bayesian approach (2nd ed.). Chicago: Open Court.Google Scholar
  9. Istituto Nazionale di Fisica Nucleare. (2011). Particles appear to travel faster than light: OPERA experiment reports anomaly in flight time of neutrinos. ScienceDaily. Retrieved October 26, 2011 from www.sciencedaily.com/releases/2011/09/110923084425.htm.
  10. Kuorikoski, J., & Marchionni, C. (2016). Evidential diversity and the triangulation of phenomena. Philosophy of Science, 83(2), 227–247.CrossRefGoogle Scholar
  11. Maxim, L. D., Niebo, R., & Utell, M. J. (2014). Screening tests: A review with examples. Inhalation Toxicology, 26(13), 811–828.CrossRefGoogle Scholar
  12. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco: Morgan Kaufmann.Google Scholar
  13. Pearl, J. (2009). Causality: Models, reasoning and inference (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Schupbach, J. N. (2015). Robustness, diversity of evidence, and probabilistic independence. In U. Mäki, I. Votsis, S. Ruphy, & G. Schurz (Eds.), Recent developments in the philosophy of science: EPSA13 Helsinki, number 1 in European studies in philosophy of science (pp. 305–316). Springer.  https://doi.org/10.1007/978-3-319-23015-3_23
  15. Soetaert, K. (2016). plot3D: Plotting multi-dimensional data.Google Scholar
  16. Stegenga, J., & Menon, T. (2017). Robustness and independent evidence. Philosophy of Science, 84(3), 414–435.CrossRefGoogle Scholar
  17. Thurmond, V. A. (2001). The point of triangulation. Journal of Nursing Scholarship, 33(3), 253–258.CrossRefGoogle Scholar
  18. Wheeler, G., & Scheines, R. (2011). Causation, association and confirmation. In D. Dieks, W. J. Gonzalez, S. Hartmann, T. Uebel, & M. Weber (Eds.), Explanation, prediction, and confirmation (pp. 37–51). Dordrecht: Springer. http://www.springerlink.com/content/t7j6u41256j85028/.
  19. Wheeler, G., & Scheines, R. (2013). Coherence and confirmation through causation. Mind, 122(435), 135–170.CrossRefGoogle Scholar
  20. Woodward, J. (2006). Some varieties of robustness. Journal of Economic Methodology, 13(2), 219–240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Département de philosophie et d’éthique appliquée, Faculté des lettres et sciences humainesUniversité de SherbrookeSherbrookeCanada

Personalised recommendations