pp 1–16 | Cite as

Synergic kinds

  • Manolo MartínezEmail author
S.I. : New Metaphysics of Science


According to the homeostatic property cluster family of accounts, one of the main conditions for groups of properties to count as natural is that these properties be frequently co-instantiated. I argue that this condition is, in fact, not necessary for natural-kindness. Furthermore, even when it is present, the focus on co-occurrence distorts the role natural kinds play in science. Co-occurrence corresponds to what information theorists call redundancy: observing the presence of some of the properties in a frequently co-occurrent cluster makes observations of other members of the cluster comparatively uninformative. Yet, scientific practice often, and increasingly often, singles out as natural groups of properties that are not redundant, but synergic: instantiations of properties in synergic clusters are not necessarily informative about instantiations of other properties in the cluster; rather, it is their joint instantiation that plays the explanatory role for which the natural kind is recruited.


Homeostatic property clusters Information theory Synergy Redundancy Natural kinds Richard Boyd Epistasis Connectomics 



Financial support for this work was provided by the Research Foundation—Flanders, Research Grant FWO G0C7416N. I would like to thank two anonymous referees, audiences in Barcelona and Paris, and my colleagues at the Centre for Philosophical Psychology, University of Antwerp, for comments and suggestions on earlier drafts.


  1. Alivisatos, A. P., Chun, M., Church, G. M., Greenspan, R. J., Roukes, M. L., & Yuste, R. (2012). The brain activity map project and the challenge of functional connectomics. Neuron, 74(6), 970–974.CrossRefGoogle Scholar
  2. Anastassiou, D. (2007). Computational analysis of the synergy among multiple interacting genes. Molecular Systems Biology, 3(1), 83.Google Scholar
  3. Bertschinger, N., Rauh, J., Olbrich, E., & Jost, J. (2013). Shared information—New insights and problems in decomposing information in complex systems. In Proceedings of the European conference on complex systems 2012 (pp. 251–269). Berlin: Springer.Google Scholar
  4. Bird, A. (2015). The metaphysics of natural kinds. Synthese. doi: 10.1007/s11229-015-0833-y.
  5. Boyd, R. (1989). What realism implies and what it does not. Dialectica, 43(1–2), 5–29.CrossRefGoogle Scholar
  6. Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 141–185). Cambridge: MIT Press.Google Scholar
  7. Chakravartty, A. (2007). A metaphysics for scientific realism: Knowing the unobservable. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Cordell, H. J. (2002). Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11(20), 2463–2468.CrossRefGoogle Scholar
  9. Edelman, G. M., & Tononi, G. (2013). Consciousness: How matter becomes imagination. London: Penguin.Google Scholar
  10. Ereshefsky, M. (2010). What’s wrong with the new biological essentialism. Philosophy of Science, 77(5), 674–685.CrossRefGoogle Scholar
  11. Ereshefsky, M., & Matthen, M. (2005). Taxonomy, polymorphism, and history: An introduction to population structure theory. Philosophy of Science, 72, 1–21.CrossRefGoogle Scholar
  12. Ereshefsky, M., & Reydon, T. A. C. (2015). Scientific kinds. Philosophical Studies, 172(4), 969–986.CrossRefGoogle Scholar
  13. Godman, M. (2015). The special science dilemma and how culture solves it. Australasian Journal of Philosophy, 93(3), 491–508.CrossRefGoogle Scholar
  14. Griffiths, P. E. (1999). Squaring the circle: Natural kinds with historical essences. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 209–28). Cambridge: MIT Press.Google Scholar
  15. Griffith, V., & Koch, C. (2014). Quantifying synergistic mutual information. In M. Prokopenko (Ed.), Guided self-organization: Inception. Berlin: Springer.Google Scholar
  16. Griffith, V., Chong, E. K., James, R. G., Ellison, C. J., & Crutchfield, J. P. (2014). Intersection information based on common randomness. Entropy, 16(4), 1985–2000.CrossRefGoogle Scholar
  17. Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Grant, P. E., Wedeen, V., et al. (2010). MR connectomics: Principles and challenges. Journal of Neuroscience Methods, 194(1), 34–45.CrossRefGoogle Scholar
  18. Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge: MIT Press.Google Scholar
  19. Kornblith, H. (1993). Inductive inference and its natural ground: An essay in naturalistic epistemology. Cambridge: The MIT Press.Google Scholar
  20. Kripke, S. (1980). Naming and necessity. Oxford: Blackwell.Google Scholar
  21. Mackay, T. F. (2014). Epistasis and quantitative traits: Using model organisms to study gene-gene interactions. Nature Reviews Genetics, 15(1), 22–33.CrossRefGoogle Scholar
  22. Mackay, T. F., Stone, E. A., & Ayroles, J. F. (2009). The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 10(8), 565–577.CrossRefGoogle Scholar
  23. Magnus, P. D. (2011). Drakes, seadevils, and similarity fetishism. Biology and Philosophy, 26(6), 857–870.CrossRefGoogle Scholar
  24. Martínez, M. (2015). Informationally-connected property clusters, and polymorphism. Biology and Philosophy, 30(1), 99–117.CrossRefGoogle Scholar
  25. Millikan, R. G. (1999). Historical kinds and the “special sciences”. Philosophical Studies, 95(1), 45–65.CrossRefGoogle Scholar
  26. Moore, J. H. (2003). The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity, 56(1–3), 73–82.CrossRefGoogle Scholar
  27. Okasha, S. (2002). Darwinian metaphysics: Species and the question of essentialism. Synthese, 131(2), 191–213.CrossRefGoogle Scholar
  28. Schaffner, K. F. (2016). Behaving. New York: Oxford University Press.CrossRefGoogle Scholar
  29. Slater, M. H. (2015). Natural kindness. British Journal for the Philosophy of Science, 66, 374–411.Google Scholar
  30. Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.CrossRefGoogle Scholar
  31. Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5(1), 42.CrossRefGoogle Scholar
  32. Tononi, G., & Edelman, G. M. (1998). Consciousness and complexity. Science, 282(5395), 1846–1851.CrossRefGoogle Scholar
  33. van den Heuvel, M. P., Bullmore, E. T., & Sporns, O. (2016). Comparative connectomics. Trends in Cognitive Sciences, 20(5), 345–361.CrossRefGoogle Scholar
  34. Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.CrossRefGoogle Scholar
  35. Watkinson, J., Wang, X., Zheng, T., & Anastassiou, D. (2008). Identification of gene interactions associated with disease from gene expression data using synergy networks. BMC Systems Biology, 2(1), 10.CrossRefGoogle Scholar
  36. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442.CrossRefGoogle Scholar
  37. Weber, K., Eisman, R., Higgins, S., Morey, L., Patty, A., Tausek, M., et al. (2001). An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster. Genetics, 159(3), 1045–1057.Google Scholar
  38. Weber, K., Eisman, R., Morey, L., Patty, A., Sparks, J., Tausek, M., et al. (1999). An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster. Genetics, 153(2), 773–786.Google Scholar
  39. Williams, P. L., Beer, R. D. (2010). Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515.

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Centre for Philosophical PsychologyUniversity of AntwerpAntwerpBelgium

Personalised recommendations