Skip to main content
Log in

On (not) defining cognition

  • S.I. : Cognition
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Should cognitive scientists be any more embarrassed about their lack of a discipline-fixing definition of cognition than biologists are about their inability to define “life”? My answer is “no”. Philosophers seeking a unique “mark of the cognitive” or less onerous but nevertheless categorical characterizations of cognition are working at a level of analysis upon which hangs nothing that either cognitive scientists or philosophers of cognitive science should care about. In contrast, I advocate a pluralistic stance towards uses of the term ‘cognition’ that eschews the urge to treat cognition as a metaphysically well-defined “natural” kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, F., & Aizawa, K. (2001). The bounds of cognition. Oxford: Wiley-Blackwell.

    Google Scholar 

  • Adams, F., & Garrison, R. (2013). The mark of the cognitive. Minds and Machines, 23(3), 339–352.

    Article  Google Scholar 

  • Allen, C., Grau, J. W., & Meagher, M. W. (2009). The lower bounds of cognition: What do spinal cords reveal? In J. Bickle (Ed.), The Oxford handbook of philosophy of neuroscience (pp. 129–142). Oxford: Oxford University Press.

    Google Scholar 

  • Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Anderson, J. R. (1993). Problem solving and learning. American Psychologist, 48, 35–44.

    Article  Google Scholar 

  • Angelucci, A., Clasca, F., Bricolo, E., Cramer, K. S., & Sur, M. (1997). Experimentally induced retinal projections to the ferret auditory thalamus: Development of clustered eye-specific patterns in a novel target. The Journal of Neuroscience, 17, 2040–2055.

    Google Scholar 

  • Aizawa, K. (2015). Cognition and behavior. Synthese, 1–20. doi:10.1007/s11229-014-0645-5.

  • Baker, M. D., & Stock, J. B. (2007). Signal transduction: Networks and integrated circuits in bacterial cognition. Current Biology, 17, R1021–R1024.

    Article  Google Scholar 

  • Beer, R. D., & Williams, P. L. (2015). Information processing and dynamics in minimally cognitive systems. Cognitive Science, 1, 1–38.

    Article  Google Scholar 

  • Boag, Z. (2014). Interview of John Searle. New Philosopher Magazine (2). January 25, 2014. Retrieved from August 4, 2015. http://www.newphilosopher.com/articles/john-searle-it-upsets-me-when-i-read-the-nonsense-written-by-my-contemporaries/.

  • Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61, 127–148.

    Article  Google Scholar 

  • Buckner, C. (2015). A property cluster theory of cognition. Philosophical Psychology, 28, 307–336. doi:10.1080/09515089.2013.843274.

    Article  Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Chemero, A., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science, 75, 1–27.

    Article  Google Scholar 

  • Clark, A. (2010). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.

    Google Scholar 

  • Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 10–23.

    Article  Google Scholar 

  • Cleland, C. E. (2012). Life without definitions. Synthese, 185(1), 125–144.

    Article  Google Scholar 

  • Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.

    Article  Google Scholar 

  • Dretske, F. I. (1981). Knowledge and the flow of information. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Figdor, C. (2014). On the proper domain of psychological predicates. Synthese, 1–22. doi:10.1007/s11229-014-0603-2.

  • Firestone, C., & Scholl, B. J. (2015). Cognition does not affect perception: Evaluating the evidence for ‘top-down’ effects. Behavioral and Brain Sciences, 39, 1–77.

    Google Scholar 

  • Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR–LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–275.

    Article  Google Scholar 

  • Garzón, P. C., & Keijzer, F. (2011). Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior, 19, 155–171.

    Article  Google Scholar 

  • Hartmann, S. (1999). Models and stories in hadron physics. In M. S. Morgan & M. Morrison (Eds.), Models as mediators. Ideas in context (pp. 326–346). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Hills, T. T. (2003). Toward a unified theory of animal event timing. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 77–111). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hills, T. T., Todd, P. M., & Goldstone, R. L. (2008). Search in external and internal spaces evidence for generalized cognitive search processes. Psychological Science, 19(8), 802–808.

    Article  Google Scholar 

  • Hochner, B., Shomrat, T., & Fiorito, G. (2006). The octopus: A model for a comparative analysis of the evolution of learning and memory mechanisms. The Biological Bulletin, 210, 308–317.

    Article  Google Scholar 

  • Iyer, L. M., Aravind, L., Coon, S. L., Klein, D. C., & Koonin, E. V. (2004). Evolution of cell-cell signaling in animals: Did late horizontal gene transfer from bacteria have a role? Trends in Genetics, 20, 292–299.

    Article  Google Scholar 

  • Izquierdo, E. J., & Beer, R. D. (2013). Connecting a connectome to behavior: An ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS Computational Biology, 9(2), e1002890. doi:10.1371/journal.pcbi.1002890.

    Article  Google Scholar 

  • Kuryatov, A., Laube, B., Betz, H., & Kuhse, J. (1994). Mutational analysis of the glycine-binding site of the NMDA receptor: Structural similarity with bacterial amino acid-binding proteins. Neuron, 12, 1291–1300.

    Article  Google Scholar 

  • Luce, R. D. (2003). Whatever happened to information theory in psychology? Review of General Psychology, 7(2), 183–188.

    Article  Google Scholar 

  • Ludwig, K. (1996). Singular thought and the Cartesian theory of mind. Nous, 30(4), 434–460.

    Article  Google Scholar 

  • Ludwig, K. (2015). Is distributed cognition group level cognition? Journal of Social Ontology, 1(2), 189–224.

  • Machery, E. (2012). Why I stopped worrying about the definition of life.. and why you should as well. Synthese, 185(1), 145–164. doi:10.1007/s11229-011-9880-1.

    Article  Google Scholar 

  • Macnab, R., & Koshland, D. (1972). The gradient-sensing mechanism in bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 69, 2509–2512.

    Article  Google Scholar 

  • Nakagaki, T., Kobayashi, R., Nishiura, Y., & Ueda, T. (2004). Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. Proceedings of Biological Science, 271, 2305–2310.

    Article  Google Scholar 

  • Newman, M. (2010). Networks: An introduction. New York: Oxford University Press.

    Book  Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Newton, J. R., & Sur, M. (2005). Rewiring cortex functional visual plasticity in the auditory cortex during development. In J. Syka & M. M. Merzenich (Eds.), Plasticity of the central auditory system and processing of complex acoustic signals (pp. 127–138). New York: Springer.

    Google Scholar 

  • Paoletti, P., & Neyton, J. (2007). NMDA receptor subunits: Function and pharmacology. Current Opinion in Pharmacology, 7(1), 39–47.

    Article  Google Scholar 

  • Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38. doi:10.1007/s10867-010-9195-3.

    Article  Google Scholar 

  • Polger, T. W., & Shapiro, L. A. (2016). The multiple realization book. New York: Oxford University Press.

    Book  Google Scholar 

  • Ramsey, W. D. (2007). Representation reconsidered. Cambridge University Press.

  • Ramsey, W. D. (2015). Must cognition be representational? Synthese, 1–18. doi:10.1007/s11229-014-0644-6.

  • Reid, C. R., Latty, T., Dussutour, A., & Beekman, M. (2012). Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proceedings of the National Academy of Sciences, 109(43), 17490–17494.

    Article  Google Scholar 

  • Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43(3), 151.

    Article  Google Scholar 

  • Rowlands, M. (2010). The new science of the mind: From extended mind to embodied phenomenology. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Rozenblit, L., & Keil, F. (2002). The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science, 26, 521–562.

    Article  Google Scholar 

  • Rupert, R. (2011). Review of Mark Rowlands, The new science of the mind: From extended mind to embodied phenomenology.Notre Dame Philosophical Reviews, 2011-03-35. Retrieved from Auguest 3, 2015. https://ndpr.nd.edu/news/24671-the-new-science-of-the-mind-from-extended-mind-to-embodied-phenomenology/.

  • Searle, J. (1992). The rediscovery of mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Seeley, T. D., Visscher, P. K., Schlegel, T., Hogan, P. M., Franks, N. R., & Marshall, J. A. R. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science, 335, 108–111.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 379-423–623-656.

    Article  Google Scholar 

  • Shannon, C. E. (1956). The bandwagon. IRE Transactions-Information Theory, 2(1), 3.

    Article  Google Scholar 

  • Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation module in auditory cortex. Nature, 404, 841–847.

    Article  Google Scholar 

  • Simon, H. A., & Newell, A. (1970). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145–159.

    Article  Google Scholar 

  • Sporns, O. (2012). Networks of the brain: Discovering the human connectome. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Srinivasan, M. V. (2010). Honey bees as a model for vision, perception, and cognition. Annual Review of Entomology, 55, 267–284.

    Article  Google Scholar 

  • Stotz, K., & Allen, C. (2011). From cell-surface receptors to higher learning: A whole world of experience. In K. S. Plaisance & T. A. C. Reydon (Eds.), Philosophy of behavioral biology, Boston studies in the philosophy of science (pp. 85–123). Berlin: Springer.

    Google Scholar 

  • Theiner, G., Allen, C., & Goldstone, R. L. (2010). Recognizing group cognition. Cognitive Systems Research, 11(4), 378–395.

    Article  Google Scholar 

  • van Fraassen, B. (2002). The empirical stance. New Haven, CT: Yale University Press.

    Google Scholar 

  • Villareal, L. (2004). Are viruses alive? Scientific American, 291(6), 96–102.

    Article  Google Scholar 

  • Wimsatt, W. C. (1986). Forms of aggregativity. In M. G. Grene, A. Donagan, A. N. Perovich, & M. V. Wedin (Eds.), Human nature and natural knowledge (pp. 259–291). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Wolf, D. M., Fontaine-Bodin, L., Bischofs, I., Price, G., Keasling, J., & Arkin, A. P. (2008). Memory in microbes: Quantifying history-dependent behavior in a bacterium. PLoS ONE, 3, e1700. doi:10.1371/journal.pone.0001700.

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful for invitation to present these ideas and discussion that ensued from members of the audience at the conference “What is Cognition?” organized by Cameron Buckner, Ellen Fridland, Albert Newen, and Michael Pauen at the Ruhr University, Bochum, in 2013. I am also very grateful for the patience of the editors of this special issue, which I have tested to the extreme. I have also benefited greatly from the very patient and constructive criticisms of reviewers for this journal, including the most patient of all, reviewer number 3. Earlier drafts also benefitted from comments by students and colleagues at Indiana University. Any further deficits in this paper serve as evidence of my own failure to possess any mark of cognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Allen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, C. On (not) defining cognition. Synthese 194, 4233–4249 (2017). https://doi.org/10.1007/s11229-017-1454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-017-1454-4

Keywords

Navigation