Happily entangled: prediction, emotion, and the embodied mind

A Correction to this article was published on 20 June 2019

This article has been updated

Abstract

Recent work in cognitive and computational neuroscience depicts the human cortex as a multi-level prediction engine. This ‘predictive processing’ framework shows great promise as a means of both understanding and integrating the core information processing strategies underlying perception, reasoning, and action. But how, if at all, do emotions and sub-cortical contributions fit into this emerging picture? The fit, we shall argue, is both profound and potentially transformative. In the picture we develop, online cognitive function cannot be assigned to either the cortical or the sub-cortical component, but instead emerges from their tight co-ordination. This tight co-ordination involves processes of continuous reciprocal causation that weave together bodily information and ‘top-down’ predictions, generating a unified sense of what’s out there and why it matters. The upshot is a more truly ‘embodied’ vision of the predictive brain in action.

This is a preview of subscription content, access via your institution.

Change history

  • 20 June 2019

    In the original publication, funding information was missing: Andy Clark was supported by ERC Advanced Grant 692739 (XSPECT���Expecting Ourselves���Embodied Prediction and the Construction of Conscious Experience).

Notes

  1. 1.

    There is a large and growing literature here. Good places to start include Friston (2005, 2010), Clark (2013), Hohwy (2013) and Clark (2016).

  2. 2.

    For this usage, see Clark (2013).

  3. 3.

    This helps make sense of recent work showing that top-down effects (expectation and context) impact processing even in early visual processing areas such as V1—see Petro et al. (2014) and Petro and Muckli (2016). Recent work in cognitive neuroscience has begun to suggest some of the detailed ways in which biological brains might implement such multi-level prediction machines—see Bastos et al. (2012).

  4. 4.

    See Clark (2014, chapter 7).

  5. 5.

    A driver is traditionally distinguished from a modulator. Drivers, as the name suggests, are seen as primary transmitters of information whereas modulators alter the impact of that information. Driver inputs to a thalamic relay are thus diagnostic of the function of that relay, whereas modulator inputs are not—see Sherman and Guillery (2011). Within PP, precision-weighting acts a kind of universal modulator.

  6. 6.

    This is a contemporary version of the profoundly ‘motocentric’ vision of the brain suggested in the classic work by Churchland et al. (1994).

  7. 7.

    Such a perceptual realm is constructed in a fashion that is deeply ‘narcissistic’ in exactly the sense of Akins (2006).

References

  1. Akins, K. (2006). Of sensory systems and the “aboutness” of mental states. Journal of Philosophy, 93(7), 337–372.

    Article  Google Scholar 

  2. Arnsten, A. F., & Li, B. M. (2005). Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57(11), 1377–1384.

    Article  Google Scholar 

  3. Ay, N., Bertschinger, N., Der, R., Güttler, F., & Olbrich, E. (2008). Predictive information and explorative behavior of autonomous robots. The European Physical Journal B-Condensed Matter and Complex Systems, 63(3), 329–339.

    Article  Google Scholar 

  4. Bard, P. (1928). A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. American Journal of Physiology, 84, 490–515.

    Google Scholar 

  5. Barrett, L. F., & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Theme issue: Predictions in the brain: Using our past to generate a future (M. Bar Ed.). Philosophical Transactions of the Royal Society B, 364, 1325–1334.

  6. Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16, 419–429.

    Article  Google Scholar 

  7. Barton, R. (2012). Embodied cognitive evolution and the cerebellum. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 2097–2107.

    Article  Google Scholar 

  8. Barton, R., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.

    Article  Google Scholar 

  9. Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695–711.

    Article  Google Scholar 

  10. Bialek, W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity, and learning. Neural Computation, 13(11), 2409–2463.

    Article  Google Scholar 

  11. Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage (2nd ed.). New York: Appleton.

    Google Scholar 

  12. Castiello, U. (1999). Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 3(7), 264–271.

    Article  Google Scholar 

  13. Chanes, L., & Barrett, L. F. (2016). Refining the role of limbic areas in cortical processing. Trends in Cognitive Sciences, 20(2), 96–106.

    Article  Google Scholar 

  14. Chareyron, L. J., Banta, Lavenex P., Amaral, D. G., & Lavenex, P. (2011). Stereological analysis of the rat and monkey amygdala. Journal of Comparative Neurology, 519, 3218–3239.

    Article  Google Scholar 

  15. Churchland, P. S., Ramachandran, V., et al. (1994). A critique of pure vision. In C. Koch & J. Davis (Eds.), Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press.

    Google Scholar 

  16. Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1585–1599.

    Article  Google Scholar 

  17. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 2010(33), 269–298.

    Article  Google Scholar 

  18. Clark, A. (1997). Being there: Putting brain, body and world together again. Cambridge, MA: MIT Press.

    Google Scholar 

  19. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

  20. Clark, A. (2014). Mindware: An introduction to the philosophy of cognitive science (2nd ed.). Oxford, NY: Oxford University Press.

    Google Scholar 

  21. Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford, NY: Oxford University Press.

    Book  Google Scholar 

  22. Clarke, H. F., et al. (2008). Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. Journal of Neuroscience, 28, 10972–10982.

    Article  Google Scholar 

  23. Colombetti, G. (2013). The feeling body: Affective science meets the enactive mind. Cambridge: MIT Press.

    Google Scholar 

  24. Dunnett, S. B., et al. (1991). The basal forebrain-cortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions. Trends in Neurosciences, 14, 494–501.

    Article  Google Scholar 

  25. Frijda, N. H. (1986). The emotions. Cambridge: Cambridge University Press.

    Google Scholar 

  26. Frijda, N. H. (2007). The laws of emotion. Mahwah, New Jersey: Lawrence Erlbaum Associate Publishers.

  27. Friston K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society London B: Biological Sciences, 360(1456), 815–836.

  28. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.

    Article  Google Scholar 

  29. Friston, K. (2011). What is optimal about motor control? Neuron, 72, 488–498.

    Article  Google Scholar 

  30. Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, 151.

    Google Scholar 

  31. Friston, K., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biological Cybernetics, 102(3), 227–260.

    Article  Google Scholar 

  32. Fuster, J. M. (2004). Upper processing stages of the perception-action cycle. Trends in Cognitive Sciences, 8(4), 143–145.

    Article  Google Scholar 

  33. Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 290(1038), 181–197.

    Article  Google Scholar 

  34. Guillery, R. W. (2003). Branching thalamic afferents link action and perception. Journal of Neurophysiology, 90, 539–548.

    Article  Google Scholar 

  35. Guillery, R. W. (2005). Anatomical pathways that link perception and action. Progress in Brain Research, 149, 235–256.

    Article  Google Scholar 

  36. Haken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self-organisation in physics, chemistry and biology (3rd ed.). Berlin: Springer.

    Book  Google Scholar 

  37. Helmholtz, H. (1860/1962). Handbuch der physiologischen optik (J. P. C. Southall, Ed., English trans.), Vol. 3. New York: Dover.

  38. Herrick, C. J. (1933). The functions of the olfactory parts of the cerebral cortex. Proceedings of the National Academy of Sciences, USA, 19, 7–14.

    Article  Google Scholar 

  39. Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 11, 428–434.

    Article  Google Scholar 

  40. Hinton, G. E. (2010). Learning to represent visual input. Philosophical Transactions of the Royal Society B, 365, 177–184.

    Article  Google Scholar 

  41. Hoshi E, Tanji J. (2007). Distinctions between dorsal and ventral premotor areas: Anatomical connectivity and functional properties. Current Opinion in Neurobiology, 17(2), 234–242.

  42. Hohwy, J. (2013). The predictive mind. Oxford, NY: Oxford University Press.

    Book  Google Scholar 

  43. Humphreys, G. W., & Riddoch, J. M. (2000). One more cup of coffee for the road: Object-action assemblies, response blocking and response capture after frontal lobe damage. Experimental Brain Research, 133, 81–93.

    Article  Google Scholar 

  44. Jackson, J. H. (1884). The coronian lecture on evolution and dissolution of the nervous system. British Medical Journal, 1, 660–663. doi:10.1136/bmj.1.1214.660.

  45. Joels, M., Pu, Z., Wiegert, O., Oitzl, M. S., & Krugers, H. J. (2006). Learning under stress: How does it work? Trends in Cognitive Sciences, 10(4), 152–158.

    Article  Google Scholar 

  46. Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58, 697–720.

    Article  Google Scholar 

  47. Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: Predictive processing, precision and the pulvinar. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1668) 1–13.

  48. Kiverstein, J., & Miller, M. (2015). The embodied brain: Towards a radical embodied cognitive neuroscience. Frontiers in Human Neuroscience, 9, 237.

    Article  Google Scholar 

  49. LeDoux, J. (1987). Emotion. In F. Plum (Ed.), Handbook of physiology. 1: The nervous system. Higher functions of the brain (Vol. V, pp. 419–460). Bethesda: American Physiological Society.

    Google Scholar 

  50. Leiner, H. C., et al. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.

    Article  Google Scholar 

  51. Lewis, M. (2005). Bridging emotion theory and neurobiology through dynamic systems modelling. Behavioral and Brain Sciences, 28, 169–245.

    Google Scholar 

  52. Lewis, M., & Todd, R. (2005). Getting emotional: A neural perspective on emotion, intention, and consciousness. Journal of Consciousness Studies, 12(8–10), 210–235.

    Google Scholar 

  53. MacKay, D. (1956). The epistemological problem for automata. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 235–251). Princeton, NJ: Princeton University Press.

    Google Scholar 

  54. MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum Press.

    Google Scholar 

  55. Markovic, J., Anderson, A. K., & Todd, R. M. (2015). Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research, 259, 41–229.

    Google Scholar 

  56. Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2015). Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 1, 1–100.

    Google Scholar 

  57. Maturana, H. R., & Varela, F. (1980). Autopoiesis: The organization of the living. In F. V & H. R. Maturana (Eds.), Autopoiesis and cognition. Dordrecht: Reidel.

    Google Scholar 

  58. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–748.

    Article  Google Scholar 

  59. Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

  60. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.

    Google Scholar 

  61. Papez, J. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 79, 217–224.

    Google Scholar 

  62. Parvizi, J. (2009). Corticocentric myopia: Old bias in new cognitive sciences. Trends in Cognitive Sciences, 13(8), 9–354.

    Article  Google Scholar 

  63. Parvizi, J., & Damasio, A. R. (2000). Consciousness and the brainstem. Cognition, 79, 135–160.

    Article  Google Scholar 

  64. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158.

    Article  Google Scholar 

  65. Pessoa, L. (2013). The cognitive emotional brain: From interactions to integration. Cambridge: MIT Press.

    Book  Google Scholar 

  66. Pessoa, L. (2014). Understanding brain networks and brain organization. Physics of Life Reviews, 11, 400–435.

    Article  Google Scholar 

  67. Pessoa, L. (2015). Précis on the cognitive-emotional brain. Behavioral and Brain Sciences, 38, e71. doi:10.1017/S0140525X14000120.

  68. Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neurosciences, 11(11), 773–783.

    Article  Google Scholar 

  69. Petro, L. S., & Muckli, L. (2016). The brain’s predictive prowess revealed in primary visual cortex. Proceedings of the National Academy of Sciences, 113(5) , 1124–1125.

  70. Petro, L. S., Vizioli, L., & Muckli, L. (2014). Contributions of cortical feedback to sensory processing in primary visual cortex. Frontiers in Psychology, 5, 1223.

    Article  Google Scholar 

  71. Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active Inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17–35.

    Article  Google Scholar 

  72. Powell, K. D., & Goldberg, M. E. (2000). Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. Journal of Neurophysiology, 84(1), 301–310.

    Article  Google Scholar 

  73. Rilling, J. K., & Insel, T. R. (1999). The primate neocortex in comparative perspective using magnetic resonance imaging. Journal of Human Evolution, 37, 191–223.

    Article  Google Scholar 

  74. Risold, P. Y., Thompson, R. H., & Swanson, L. W. (1997). The structural organization of connections between hypothalamus and cerebral cortex. Brain Research Reviews, 24(2–3), 197–254.

    Article  Google Scholar 

  75. Semendeferi, K., Lu, A., Schenker, N., & Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272–276.

    Article  Google Scholar 

  76. Sherman, S. M. (2007). The thalamus is more than just a relay. Current Opinion in Neurobiology, 17, 417–422.

    Article  Google Scholar 

  77. Sherman, S. M., & Guillery, R. W. (2011). Distinct functions for direct and transthalamic corticocortical connections. Journal of Neurophysiol, 106, 1068–1077.

    Article  Google Scholar 

  78. Sherman, S. M., & Guillery, R. W. (2013). Thalamocortical processing: Understanding the messages that link the cortex to the world. Cambridge: MIT Press.

    Google Scholar 

  79. Sherwood, C., Bauernfein, A. L., Bianchi, S., Raghanti, M. A., & Hof, P. R. (2012). Human brain evolution writ large and small. In M. A. Hofman & D. Falk (Eds.), Evolution of the primate brain: From neuron to behavior (pp. 237–257). Oxford: Elsevier.

    Google Scholar 

  80. Shipp, S. (2003). The functional logic of cortico-pulvinar connections. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 1605–1624.

    Article  Google Scholar 

  81. Soodak, H., & Iberall, A. (1978). omeokinetics: A hysical Science r Complex Systems. Science, 201, 18.

    Article  Google Scholar 

  82. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavorial and Brain Sciences, 23, 645–726.

    Article  Google Scholar 

  83. Stapleton, M. (2013). Steps to a “Properly Embodied” cognitive science. Cognitive Systems Research, 22–23, 1–11.

    Article  Google Scholar 

  84. Swanson, L. W. (2000). Cerebral hemisphere regulation of motivated behavior. Brain Research, 886, 113–164.

    Article  Google Scholar 

  85. Theyel, B., Llano, D., & Sherman, S. (2010). The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience, 13, 84–88.

    Article  Google Scholar 

  86. Tishby, N., & Polani, D. (2011). Information theory of decisions and actions. In V. Cutsuridis, A. Hussain & J. G. Taylor (Eds.), Perception-action cycle (pp. 601–636). New York: Springer.

  87. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(15), 775–786.

    Google Scholar 

  88. van den Heuvel, M. P., & Sporns, O. (2013a). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–696.

    Article  Google Scholar 

  89. van den Heuvel, M. P., & Sporns, O. (2013b). An anatomical substrate for integration among functional networks in human cortex. Journal of Neuroscience, 33(14), 489–500.

    Google Scholar 

  90. Winston, P. H. (2012). The next 50 years: A personal view. Biologically Inspired Cognitive Architectures, 1, 92–99.

    Article  Google Scholar 

  91. Wurtz, R. H., McAlonan, K., Cavanaugh, J., & Berman, R. A. (2011). Thalamic pathways for active vision. Trends in Cognitive Sciences, 15(4), 177–184.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Miller.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, M., Clark, A. Happily entangled: prediction, emotion, and the embodied mind. Synthese 195, 2559–2575 (2018). https://doi.org/10.1007/s11229-017-1399-7

Download citation

Keywords

  • Predictive processing
  • Affective neuroscience
  • Embodied mind
  • Affordance competition
  • Pulvinar