Synthese

pp 1–28 | Cite as

Is defining life pointless? Operational definitions at the frontiers of biology

Article

Abstract

Despite numerous and increasing attempts to define what life is, there is no consensus on necessary and sufficient conditions for life. Accordingly, some scholars have questioned the value of definitions of life and encouraged scientists and philosophers alike to discard the project. As an alternative to this pessimistic conclusion, we argue that critically rethinking the nature and uses of definitions can provide new insights into the epistemic roles of definitions of life for different research practices. This paper examines the possible contributions of definitions of life in scientific domains where such definitions are used most (e.g., Synthetic Biology, Origins of Life, Alife, and Astrobiology). Rather than as classificatory tools for demarcation of natural kinds, we highlight the pragmatic utility of what we call operational definitions that serve as theoretical and epistemic tools in scientific practice. In particular, we examine contexts where definitions integrate criteria for life into theoretical models that involve or enable observable operations. We show how these definitions of life play important roles in influencing research agendas and evaluating results, and we argue that to discard the project of defining life is neither sufficiently motivated, nor possible without dismissing important theoretical and practical research.

Keywords

Definitions of life Integration Origins of life Artificial life Synthetic biology Astrobiology Philosophy of science in practice 

Notes

Acknowledgements

The authors thank Carol Cleland for the challenging and stimulating discussion on the prospects and limitations of defining life. We also thank the other fellows of the Center for Philosophy of Science at the University of Pittsburgh during the spring term 2016: Agnes Bolinska, Andrew Inkpen, Nancy Nersessian, Mael Pegny, Mike Stuart, Matthias Unterhuber, and the Director John Norton, for the very valuable feedback. We acknowledge William Bechtel and Derek Skillings for their careful reading and useful comments on a previous version of this paper, and Alba Amilburu, Ben Shirt-Ediss, Kepa Ruiz-Mirazo, and Pasquale Stano for bibliographical suggestions. Leonardo Bich was supported by grants from the CONICYT, Chile (FONDECYT Regular 1150052), the Basque Government (IT 590-13) and Ministerio de Economía y Competitividad, Spain (FFI2014-52173-P), and a Visiting Fellowship from the Center for Philosophy of Science of the University of Pittsburgh. Revisions were done during Leonardo Bich’s postdoctoral fellowship funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme—Grant agreement no 637647 – IDEM.

References

  1. Adamala, K., & Szostak, J. (2013). Competition between model protocells driven by an encapsulated catalyst. Nature Chemistry, 5(6), 495–501.CrossRefGoogle Scholar
  2. Agmon, E., Gates, A. J., Churavy, V., & Beer, R. (2016). Exploring the space of viable configurations in a model of metabolism-boundary co-construction. Artificial Life, 22(2), 153–171.CrossRefGoogle Scholar
  3. Amilburu, A. (2015). La naturaleza de los géneros naturales. Un estudio crítico sobre la contribución de esta noción a la comprensión de las prácticas clasificatorias en ciencia. PhD Dissertation, University of the Basque Country.Google Scholar
  4. Bains, W. (2014). What do we think life is? A simple illustration and its consequences. International Journal of Astrobiology, 13(02), 101–111.CrossRefGoogle Scholar
  5. Bartol, J. (2013). Re-examining the gene in personalized genomics. Science & Education, 22(10), 2529–2546.CrossRefGoogle Scholar
  6. Bechtel, W. (2007). Biological mechanisms: Organized to maintain autonomy. In F. Boogerd, F. Bruggerman, J. H. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: Philosophical foundations (pp. 269–302). Amsterdam: Elsevier.CrossRefGoogle Scholar
  7. Bedau, M. A. (1998). Four puzzles about life. Artificial Life, 4, 125–140.CrossRefGoogle Scholar
  8. Bedau, M. A., & Cleland, C. E. (2010). The nature of life: Classical and contemporary perspectives from philosophy and science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Bich, L. (2010). Biological autonomy and systemic integration. Origins of Life and Evolution of Biospheres, 40, 480–484.Google Scholar
  10. Bich, L., & Damiano, L. (2007). Question 9: Theoretical and artificial construction of the living: Redefining the approach from an autopoietic point of view. Origins of Life and Evolution of Biospheres, 37(4–5), 459–464.CrossRefGoogle Scholar
  11. Bich, L., & Damiano, L. (2012). Life, autonomy and cognition: An organizational approach to the definition of the universal properties of life. Origins of Life and Evolution of Biospheres, 42(5), 389–397.CrossRefGoogle Scholar
  12. Bich, L., Mossio, M., Ruiz-Mirazo, K., & Moreno, A. (2016). Biological regulation: Controlling the system from within. Biology & Philosophy, 31(2), 237–265.CrossRefGoogle Scholar
  13. Bitbol, M., & Luisi, P. L. (2004). Autopoiesis with or without cognition: Defining life at its edge. Journal of the Royal Society Interface, 1, 99–107.CrossRefGoogle Scholar
  14. Boden, M. (1999). Is metabolism necessary? The British Journal for the Philosophy of Science, 50, 231–248.CrossRefGoogle Scholar
  15. Brigandt, I. (2011). Natural kinds and concepts: A pragmatist and methodologically naturalistic account. In J. Knowles & H. Rydenfelt (Eds.), Pragmatism, science and naturalism (pp. 171–196). Berlin: Peter Lang Publishing.Google Scholar
  16. Carrara, P., Stano, P., & Luisi, P. L. (2012). Giant vesicles “colonies”: A model for primitive cell communities. ChemBioChem, 13(10), 1497–1502.CrossRefGoogle Scholar
  17. Cleland, C. (2012). Life without definitions. Synthese, 185, 125–144.CrossRefGoogle Scholar
  18. Cleland, C. E., & Chyba, C. F. (2002). Defining ‘life’. Origins of Life and Evolution of the Biosphere, 32, 387–393.CrossRefGoogle Scholar
  19. Cleland, C., & Chyba, C. (2007). Does ‘life’ have a definition? In W. T. Sullivan & J. A. Baross (Eds.), Planets and life (pp. 119–131). Cambridge: Cambridge University Press.Google Scholar
  20. Cornish-Bowden, A. (2006). Putting the systems back into systems biology. Perspectives in Biology and Medicine, 49, 475–489.CrossRefGoogle Scholar
  21. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Reviews Microbiology, 49(1), 711–745.CrossRefGoogle Scholar
  22. Cronin, L., Krasnodor, N., Davis, B., et al. (2006). The imitation game: A computational chemical approach to recognizing life. Nature Biotechnology, 24(10), 1203–1206.CrossRefGoogle Scholar
  23. Cyzewska, U. (2011). Difficulties of the Re-Emergent Science: The case of Astrobiology. Interdisciplinary Science Reviews, 34(4), 330–339.CrossRefGoogle Scholar
  24. Damiano, L., & Luisi, P. (2010). Towards an autopoietic redefinition of life. Origins of Life and Evolution of Biospheres, 40(2), 145–149.CrossRefGoogle Scholar
  25. Diéguez, A. (2013). Life as a homeostatic property cluster. Biological Theory, 7(2), 180–186.CrossRefGoogle Scholar
  26. Di Frisco, J. (2014). Hylomorphism and the metabolic closure conception of life. Acta Biotheoretica, 62, 499–525.CrossRefGoogle Scholar
  27. Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press.Google Scholar
  28. Dupré, J., & O’Malley, M. A. (2009). Varieties of living things: Life at the intersection of lineage and metabolism. Philosophy and Theory in Biology, 1, e003.CrossRefGoogle Scholar
  29. Etxeberria, A., & Ruiz-Mirazo, K. (2009). The challenging biology of transients. A view from the perspective of autonomy. EMBO Reports, 10(1), s33–s36.CrossRefGoogle Scholar
  30. Fleischaker, G. (1990). Origins of life: An operational definition. Origins of Life and Evolution of Biospheres, 20, 127–137.CrossRefGoogle Scholar
  31. Forlin, M., Lentini, R., & Mansy, S. (2012). Cellular imitations. Current Opinion in Chemical Biology, 16, 586–592.CrossRefGoogle Scholar
  32. Forterre, P. (2010). Defining life: The virus viewpoint. Origins of Life and Evolution of Biospheres, 40(2), 151–160.CrossRefGoogle Scholar
  33. Gánti, T. (1975). Organization of chemical reactions into dividing and metabolizing units: The chemotons. BioSystems, 7, 189–195.CrossRefGoogle Scholar
  34. Gánti, T. (1979). A theory of biochemical supersystems. Baltimore: University Park Press.Google Scholar
  35. Gánti, T. (2003a). The principles of life. Oxford: Oxford University Press.CrossRefGoogle Scholar
  36. Gánti, T. (2003b). Chemoton theory. New York: Kluwer Academic/Plenum Publisher.CrossRefGoogle Scholar
  37. Gigerenzer, G., & Goldstein, D. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103(4), 650–669.CrossRefGoogle Scholar
  38. Gilbert, S., & Sarkar, S. (2000). Embracing complexity: Organicism for the twenty-first century. Developmental Dynamics, 219, 1–9.CrossRefGoogle Scholar
  39. Grand, S., Cliff, D., & Malhotra, A. (1996). Creatures: Artificial life autonomous software agents for home entertainment. In Research report CSRP 434. Brighton: University of Sussex School of Cognitive and Computing Sciences.Google Scholar
  40. Griesemer, J. (2015). The enduring value of Gántixs chemoton model and life criteria: Heuristic pursuit of exact theoretical biology. Journal of Theoretical Biology, 381, 23–28.CrossRefGoogle Scholar
  41. Griesemer, J., & Szathmáry, E. (2009). Gánti’s Chemoton model and life criteria. In S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. C. Krakauer, N. H. Packard, & P. F. Stadler (Eds.), Protocells: Bridging nonliving and living matter (pp. 481–513). Cambridge, MA: MIT Press.Google Scholar
  42. Goodman, N. (1983). Fact, fiction, and forecast. Cambridge, MA: Harvard University Press.Google Scholar
  43. Guiloff, G. D. (1981). Autopoiesis and neobiogenesis. In M. Zeleny (Ed.), Autopoiesis: A theory of living organization (pp. 118–125). New York: North Holland.Google Scholar
  44. Hanczyc, M. (2009). The early history of protocells: The search for the recipe of life. In S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. C. Krakauer, N. H. Packard, & P. F. Stadler (Eds.), Protocells: Bridging nonliving and living matter (pp. 3–17). Cambridge, MA: MIT Press.Google Scholar
  45. Kompanichenko, V. (2008). Three stages of the origin of life process: Bifurcation, stabilization and inversion. International Journal of Astrobiology, 7(1), 27–46.CrossRefGoogle Scholar
  46. Kripke, S. (1972). Naming and necessity. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  47. Langton, C. G. (1989). Artificial life. In C. G. Langton (Ed.), Artificial life: Proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems (pp. 1–47). Redwood City: Addison-Wesley.Google Scholar
  48. Letelier, J. C., Cárdenas, M., & Cornish-Bowden, A. (2011). From “L’Homme Machine” to metabolic closure: Steps towards understanding life. Journal of Theoretical Biology, 286(1), 100–113.CrossRefGoogle Scholar
  49. Luisi, P. L. (1993). Defining the transition to life: Self-replicating bounded structures and chemical autopoiesis. In Varela Stein (Ed.), Thinking about biology: An invitation to current theoretical biology (pp. 17–40). Reading: Addison-Wesley.Google Scholar
  50. Luisi, P. L. (1998). About various definitions of life. Origins of Life and Evolution of the Biosphere, 28, 613–622.CrossRefGoogle Scholar
  51. Luisi, P. L. (2006). The emergence of life: From chemical origins to synthetic biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Luisi, P. L. (2015). The minimal autopoietic unit. Origins of Life and Evolution of Biospheres, 44(4), 335–338.CrossRefGoogle Scholar
  53. Luisi, P. L., Allegretti, M., Souza, T. P., Steininger, F., Fahr, A., & Stano, P. (2010). Spontaneous protein crowding in liposomes: A new vista for the origin of cellular metabolism. ChemBioChem, 11, 1989–1992.CrossRefGoogle Scholar
  54. Machery, E. (2012). Why I stopped worrying about the definition of life.. and why you should as well. Synthese, 185(1), 145–164.CrossRefGoogle Scholar
  55. Malaterre, C. (2010). On what it is to fly can tell us something about what it is to live. Origins of Life and Evolution of Biospheres, 40(2), 169–177.CrossRefGoogle Scholar
  56. Mansy, S., Schrum, J., Krishnamurthy, M., Tobé, S., Treco, D., & Szostak, J. (2008). Template-directed synthesis of a genetic polymer in a model protocell. Nature, 454, 122–125.CrossRefGoogle Scholar
  57. Maturana, H. & Varela, F. J. (1973). De Máquinas y Seres Vivos: Una teoría sobre la organización biológica, Santiago: Editorial Universitaria (In H. Maturana, F.J. Varela, 1980, Autopoiesis and Cognition. The Realization of the Living. Dordrecht: North Holland).Google Scholar
  58. Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Cambridge, MA: The Belknap Press.Google Scholar
  59. Mitchell, S. (2005). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.Google Scholar
  60. Monastersky, R. (2014). Life: A status report. Nature, 516, 159–161.CrossRefGoogle Scholar
  61. Moreno, A. (2016). Some conceptual issues in the transition from chemistry to biology. History and Philosophy of the Life Sciences, 38(4), 1–16.CrossRefGoogle Scholar
  62. Moreno, A., & Etxeberria, A. (2005). Agency in natural and artificial systems. Artificial Life, 11(1–2), 161–176.CrossRefGoogle Scholar
  63. Moreno, A., & Mossio, M. (2015). Biological autonomy: A philosophical and theoretical inquiry. New York: Springer.CrossRefGoogle Scholar
  64. Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge, MA: MIT Press.Google Scholar
  65. Murillo-Sanchez, S., Beaufils, D., Gonzalez Mañas, J. M., Pascal, R., & Ruiz-Mirazo, K. (2016). Fatty acids’ double role in the prebiotic formation of a hydrophobic dipeptide. Chemical Science, 7, 3406–3413.CrossRefGoogle Scholar
  66. Nicholson, D. J. (2014). The return of the organism as a fundamental explanatory concept in biology. Philosophy Compass, 9(5), 347–359.CrossRefGoogle Scholar
  67. Noireaux, V., & Libchaber, A. (2004). A vesicle bioreactor as a step toward an artificial cell assembly. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17669–17674.CrossRefGoogle Scholar
  68. Oberholzer, T., Wick, R., Luisi, P. L., & Biebricher, C. K. (1995). Enzymatic RNA replication in self-reproducing vesicles: An approach to a minimal cell. Biochemical and Biophysical Research Communications, 207, 250–257.CrossRefGoogle Scholar
  69. Piedrafita, G., Montero, F., Morán, F., Cárdenas, M.-L., & Cornish-Bowden, A. (2010). A simple self-maintaining metabolic system: Robustness, autocatalysis, bistability. PLoS Computational Biology, 6(8), e1000872.CrossRefGoogle Scholar
  70. Popa, R. (2004). Between necessity and probability: Searching for the definition and origin of life. New York: Springer.Google Scholar
  71. Putnam, H. (1975). The meaning of ‘meaning’. In K. Gunderson (Ed.), Language, mind and knowledge: Minnesota studies in the philosophy of science (Vol. VII, pp. 131–193). Minneapolis, MN: Minnesota University Press.Google Scholar
  72. Rasmussen, S., Bedau, M., Hen, L., Deamer, D., Krakauer, D. C., Packard, N. H., et al. (2008). Protocells: Bridging nonliving and living matter. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  73. Raulin, F. (2010). Searching for an exo-life in the solar system. Origins of Life and Evolution of Biospheres, 40(2), 191–193.CrossRefGoogle Scholar
  74. Ray, T. S. (1992). An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial life II (pp. 371–408). Redwood City, CA: Addison-Wesley.Google Scholar
  75. Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.Google Scholar
  76. Ruiz-Mirazo, K., Briones, C., & De la Escosura, A. (2014). Prebiotic systems chemistry: new perspectives for the origins of life. Chemical Reviews, 114, 285–366.CrossRefGoogle Scholar
  77. Ruiz-Mirazo, K., & Mavelli, F. (2008). Towards ‘basic autonomy’: Stochastic simulations of minimal lipid–peptide cells. Biosystems, 91(2), 374–387.CrossRefGoogle Scholar
  78. Ruiz-Mirazo, K., & Moreno, A. (2004). Basic autonomy as a fundamental step in the synthesis of life. Artificial Life, 10(3), 253–259.CrossRefGoogle Scholar
  79. Ruiz-Mirazo, K., & Moreno, A. (2013). Synthetic biology: Challenging life in order to grasp, use or extend it. Biological Theory, 8(4), 376–382.CrossRefGoogle Scholar
  80. Ruiz-Mirazo, K., Peretó, J., & Moreno, A. (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of Biospheres, 34(3), 323–346.CrossRefGoogle Scholar
  81. Ruiz-Mirazo, K., Peretó, J., & Moreno, A. (2010). Defining life or bringing biology to life. Origins of Life and Evolution of Biospheres, 40(2), 203–213.CrossRefGoogle Scholar
  82. Scully, J. L. (2004). What is a disease? EMBO Reports, 5(7), 650–653.CrossRefGoogle Scholar
  83. Shirt-Ediss, B. (2016). Modelling early transitions toward autonomous protocells. PhD Dissertation, University of the Basque Country.Google Scholar
  84. Shirt-Ediss, B., Ruiz-Mirazo, K., Mavelli, F., & Sole, R. (2014). Modelling Lipid Competition Dynamics in Heterogeneous Protocell Populations. Scientific Reports, 4(5675). doi: 10.1038/srep05675.
  85. Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63, 129–138.CrossRefGoogle Scholar
  86. Souza, T., Fahr, A., Luisi, P. L., & Stano, P. (2014). Spontaneous encapsulation and concentration of biological macromolecules in liposomes: An intriguing phenomenon and its relevance in origins of life. Journal of Molecular Evolution, 79, 179–192.CrossRefGoogle Scholar
  87. Stano, P., & Luisi, P. L. (2016). Theory and construction of semi-synthetic minimal cells. In D. L. Nesbeth (Ed.), Synthetic biology handbook (pp. 209–258). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  88. Stano, P., & Mavelli, F. (2015). Protocells models in origin of life and synthetic biology. Life, 5, 1700–1702.CrossRefGoogle Scholar
  89. Szostak, J. (2012). Attempts to define life do not help to understand the origin of life. Journal of Biomolecular Structure and Design, 29(4), 599–600.CrossRefGoogle Scholar
  90. Szostak, J., Bartel, D., & Luisi, P. L. (2001). Synthesizing life. Nature, 409, 387–390.CrossRefGoogle Scholar
  91. Tirard, S., Morange, M., & Lazcano, A. (2010). The definition of life: A brief history of an elusive scientific endeavor. Astrobiology, 10(10), 1003–1009.CrossRefGoogle Scholar
  92. Trifonov, E. (2011). Vocabulary of definitions of life suggests a definition. Journal of Biomolecular Structure and Design, 29(2), 259–266.CrossRefGoogle Scholar
  93. Trifonov, E. (2012). Definition of life: Navigation through uncertainties. Journal of Biomolecular Structure and Design, 29(4), 647–650.CrossRefGoogle Scholar
  94. Tsokolov, S. (2010). A theory of circular organization and negative feedback: Defining life in a cybernetic context. Astrobiology, 10(10), 1031–1042.CrossRefGoogle Scholar
  95. Umerez, J. (1995). Semantic closure: A guiding notion to ground artificial life. In F. Morán, A. Moreno, J. Merelo, & P. Chacón (Eds.), Advances in Artificial Life (pp. 77–94). New York: Springer.CrossRefGoogle Scholar
  96. van Segbroeck, S., Nowe, A., & Lenaerts, T. (2009). Stochastic simulation of the chemoton. Artificial Life, 15, 213–226.CrossRefGoogle Scholar
  97. Varela, F. J., Maturana, H., & Uribe, R. (1974). Autopoiesis: the organization of living systems, its characterization and a model. Biosystems, 5, 187–196.CrossRefGoogle Scholar
  98. Waters, C. K. (2006). A pluralist interpretation of gene-centered biology. In S. H. Kellert, H. E. Longino, & C. K. Waters (Eds.), Scientific pluralism (pp. 190–213). Minneapolis, MN: University of Minnesota Press.Google Scholar
  99. Woese, C. (2004). A new biology for a new century. Microbiology and Molecular Biology Review, 68(2), 173–186.CrossRefGoogle Scholar
  100. Wolfe, C. T. (2014). The organism as ontological go-between: Hybridity, boundaries and degrees of reality in its conceptual history. Studies in History and Philosophy of Biological and Biomedical Sciences, 48(B), 151–161.CrossRefGoogle Scholar
  101. Wolkenhauer, O., & Hofmeyr, J. (2007). An abstract cell model that describes the self-organization of cell function in living systems. Journal of Theoretical Biology, 246(3), 461–476.CrossRefGoogle Scholar
  102. Zachar, I., Fedor, A., & Szathmary, E. (2011). Two different template replicators coexisting in the same protocell: Stochastic simulation of an extended chemoton model. PLoS ONE, 6(7), e2138.CrossRefGoogle Scholar
  103. Zepik, H. H., Blöchliger, E., & Luisi, P. L. (2001). A chemical model of homeostasis. Angewandte Chemie, 113, 205–208.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Immunoconcept, CNRS UMR 5164Bordeaux UniversityBordeauxFrance
  2. 2.Department of Science Education, Section for History and Philosophy of ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations