Advertisement

Synthese

, Volume 195, Issue 6, pp 2483–2518 | Cite as

Betwixt and between: the enculturated predictive processing approach to cognition

  • Regina E. Fabry
S.I.: Predictive Brains

Abstract

Many of our cognitive capacities are the result of enculturation. Enculturation is the temporally extended transformative acquisition of cognitive practices in the cognitive niche. Cognitive practices are embodied and normatively constrained ways to interact with epistemic resources in the cognitive niche in order to complete a cognitive task. The emerging predictive processing perspective offers new functional principles and conceptual tools to account for the cerebral and extra-cerebral bodily components that give rise to cognitive practices. According to this emerging perspective, many cases of perception, action, and cognition are realized by the on-going minimization of prediction error. Predictive processing provides us with a mechanistic perspective that helps investigate the functional details of the acquisition of cognitive practices. The argument of this paper is that research on enculturation and recent work on predictive processing are complementary. The main reason is that predictive processing operates at a sub-personal level and on a physiological time scale of explanation only. A complete account of enculturated cognition needs to take additional levels and temporal scales of explanation into account. This complementarity assumption leads to a new framework—enculturated predictive processing—that operates on multiple levels and temporal scales for the explanation of the enculturated predictive acquisition of cognitive practices. Enculturated predictive processing is committed to explanatory pluralism. That is, it subscribes to the idea that we need multiple perspectives and explanatory strategies to account for the complexity of enculturation. The upshot is that predictive processing needs to be complemented by additional considerations and conceptual tools to realize its full explanatory potential.

Keywords

Predictive processing Enculturation Neural plasticity Cognitive practice Embodiment Scaffolded learning 

Notes

Acknowledgements

I would like to thank two anonymous reviewers for their constructive comments on this paper. Furthermore, I am grateful to Richard Menary, Thomas Metzinger, and Jakob Hohwy for various helpful discussions along the way. Part of this work was funded by the Barbara Wengeler Foundation.

References

  1. Adams, F., & Aizawa, K. (2001). The bounds of cognition. Philosophical Psychology, 14(1), 43–64.Google Scholar
  2. Adams, F., & Aizawa, K. (2010). The value of cognitivism in thinking about extended cognition. Phenomenology and the Cognitive Sciences, 9(4), 579–603. doi: 10.1007/s11097-010-9184-9.Google Scholar
  3. Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245–266.Google Scholar
  4. Anderson, M. L. (2015). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT Press.Google Scholar
  5. Anderson, M. L. (2016). Neural reuse in the organization and development of the brain. Developmental Medicine and Child Neurology, 58(4), 3–6.Google Scholar
  6. Anderson, M. L., & Chemero, A. (2013). The problem with brain GUTs: Conflation of different senses of “prediction” threatens metaphysical disaster. Behavioral and Brain Sciences, 36(3), 204–205.Google Scholar
  7. Anderson, M. L., & Finlay, B. L. (2014). Allocating structure to function: The strong links between neuroplasticity and natural selection. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2013.00918.
  8. Anderson, M. L., Richardson, M. J., & Chemero, A. (2012). Eroding the boundaries of cognition: Implications of embodiment. Topics in Cognitive Science, 4(4), 717–730.Google Scholar
  9. Ansari, D. (2012). Culture and education: New frontiers in brain plasticity. Trends in Cognitive Sciences, 16(2), 93–95. doi: 10.1016/j.tics.2011.11.016.Google Scholar
  10. Ansari, D. (2015). Mind, brain, and education: A discussion of practical, conceptual, and ethical issues. In J. Clauen & N. Levy (Eds.), Handbook of neuroethics (pp. 1703–1719). Dordrecht: Springer.Google Scholar
  11. Baron-Cohen, S., & Belmonte, M. K. (2005). Autism: A window onto the development of the social and the analytic brain. Annual Review of Neuroscience, 28(1), 109–126.Google Scholar
  12. Bechtel, W. (2009). Explanation: Mechanism, modularity, and situated cognition. In P. Robbins & M. Aydede (Eds.), The Cambridge handbook of situated cognition (pp. 155–170). Cambridge: Cambridge University Press.Google Scholar
  13. Bedo, N., Ribary, U., Ward, L. M., & Valdes-Sosa, P. A. (2014). Fast dynamics of cortical functional and effective connectivity during word reading. PLoS One, 9(2), 1–13.Google Scholar
  14. Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K., & Wandell, B. A. (2011). The development of cortical sensitivity to visual word forms. Journal of Cognitive Neuroscience, 23(9), 2387–2399.Google Scholar
  15. Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, 108(Supplement 2), 10918–10925.Google Scholar
  16. Brem, S., Bach, S., Kucian, K., Guttorm, T. K., Martin, E., Lyytinen, H., et al. (2010). Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proceedings of the National Academy of Sciences, 107(17), 7939–7944.Google Scholar
  17. Brock, J., & Caruana, N. (2014). Reading for sound and reading for meaning in autism: Frith and Snowling (1983) revisited. In J. Arciuli & J. Brock (Eds.), Communication in autism: Trends in language acquisition research (pp. 125–145). Amsterdam: John Benjamins.Google Scholar
  18. Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.Google Scholar
  19. Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9(3), 104–110.Google Scholar
  20. Clark, A. (1997). Being there: Putting brain, body, and world together again (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
  21. Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends in Cognitive Sciences, 10(8), 370–374.Google Scholar
  22. Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.Google Scholar
  23. Clark, A. (2013a). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181–204. doi: 10.1017/S0140525X12000477.Google Scholar
  24. Clark, A. (2013b). The many faces of precision (Replies to commentaries on “Whatever next? Neural prediction, situated agents, and the future of cognitive science”). Frontiers in Psychology. doi: 10.3389/fpsyg.2013.00270.
  25. Clark, A. (2014). Mindware: An introduction to the philosophy of cognitive science (2nd ed.). Oxford, NY: Oxford University Press.Google Scholar
  26. Clark, A. (2015). Embodied prediction. In T. Metzinger & J. M. Windt (Eds.), Open MIND (pp. 1–21). Frankfurt am Main: MIND Group.Google Scholar
  27. Clark, A. (2016a). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford, NY: Oxford University Press.Google Scholar
  28. Clark, A. (2016b). Busting out: Predictive brains, embodied minds, and the puzzle of the evidentiary veil. Noûs.Google Scholar
  29. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19.Google Scholar
  30. Cohen, M. X. (2011). It’s about time. Frontiers in Human Neuroscience, 5, 1–15.Google Scholar
  31. Colombo, M., & Wright, C. (2017). Explanatory pluralism: An unrewarding prediction error for free energy theorists. Brain and Cognition, 112, 3–12.Google Scholar
  32. Craver, C., & Bechtel, W. (2006). Mechanism. In S. Sarkar & J. Pfeifer (Eds.), The philosophy of science: An encyclopedia (pp. 469–478). New York: Routledge.Google Scholar
  33. Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends in Cognitive Sciences, 13(4), 148–153.Google Scholar
  34. Csibra, G., & Gergely, G. (2011). Natural pedagogy as evolutionary adaptation. Philosophical Transactions of the Royal Society B, 366(1567), 1149–1157.Google Scholar
  35. Dale, R. (2008). The possibility of a pluralist cognitive science. Journal of Experimental & Theoretical Artificial Intelligence, 20(3), 155–179.Google Scholar
  36. Dale, R., Dietrich, E., & Chemero, A. (2009). Explanatory pluralism in cognitive science. Cognitive Science, 33(5), 739–742.Google Scholar
  37. de Bruin, L., & Michael, J. (2017). Prediction error minimization: Implications for embodied cognition and the extended mind hypothesis. Brain and Cognition, 112, 58–63.Google Scholar
  38. Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In S. Dehaene, J.-R. Duhamel, M. D. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain. A Fyssen Foundation symposium (pp. 133–157). Cambridge, MA: MIT Press.Google Scholar
  39. Dehaene, S. (2010). Reading in the brain: The new science of how we read. New York: Penguin Books.Google Scholar
  40. Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254–262.Google Scholar
  41. Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9(7), 335–341.Google Scholar
  42. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364.Google Scholar
  43. de Jong, H. L. (2001). Introduction: A symposium on explanatory pluralism. Theory & Psychology, 11(6), 731–735.Google Scholar
  44. Dennett, D. C. (1969). Content and consciousness. London, NY: Routledge & K. Paul.Google Scholar
  45. Dewey, J. (1896). The reflex arc concept in psychology. Psychological Review, 3(4), 357–370.Google Scholar
  46. Dounskaia, N., van Gemmert, A. W. A., & Stelmach, G. E. (2000). Interjoint coordination during handwriting-like movements. Experimental Brain Research, 135(1), 127–140.Google Scholar
  47. Downey, G., & Lende, D. H. (2012). Neuroanthropology and the encultured brain. In D. H. Lende & G. Downey (Eds.), The encultured brain: An introduction to neuroanthropology (pp. 23–65). Cambridge, MA: MIT Press.Google Scholar
  48. Drayson, Z. (2012). The uses and abuses of the personal/subpersonal distinction. Philosophical Perspectives, 26(1), 1–18.Google Scholar
  49. Drayson, Z. (2014). The personal/subpersonal distinction. Philosophy Compass, 9(5), 338–346.Google Scholar
  50. DSM-5 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Publishing.Google Scholar
  51. Dutilh Novaes, C. (2012). Formal languages in logic: A philosophical and cognitive analysis. New York: Cambridge University Press.Google Scholar
  52. Dutilh Novaes, C. (2013). Mathematical reasoning and external symbolic systems. Logique & Analyse, 221, 45–65.Google Scholar
  53. Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2010.00215.
  54. Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48–58.Google Scholar
  55. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836.Google Scholar
  56. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.Google Scholar
  57. Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology. doi: 10.3389/fpsyg.2012.00151.
  58. Friston, K., & Buzsáki, G. (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20(7), 500–511.Google Scholar
  59. Friston, K., & Frith, C. (2015). Active inference, communication and hermeneutics. Cortex, 68, 129–143.Google Scholar
  60. Friston, K. J., Lawson, R., & Frith, C. D. (2013). On hyperpriors and hypopriors: Comment on Pellicano and Burr. Trends in Cognitive Sciences, 17(1), 1.Google Scholar
  61. Friston, K., Sengupta, B., & Auletta, G. (2014). Cognitive dynamics: From attractors to active inference. Proceedings of the IEEE, 102(4), 427–445.Google Scholar
  62. Frith, U. (1985). Beneath the surface of developmental dyslexia. In K. E. Patterson, J. C. Marshall, & M. Coltheart (Eds.), Surface dyslexia: Neuropsychological and cognitive studies of phonological reading (pp. 301–330). Hillsdale, NJ: Erlbaum.Google Scholar
  63. Frith, U. (2003). Autism: Explaining the enigma (2nd ed.). Malden, MA: Blackwell.Google Scholar
  64. Frith, U., & Snowling, M. (1983). Reading for meaning and reading for sound in autistic and dyslexic children. British Journal of Developmental Psychology, 1(4), 329–342.Google Scholar
  65. Gaillard, R., Naccache, L., Pinel, P., Clémenceau, S., Volle, E., Hasboun, D., et al. (2006). Direct intracranial, fMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron, 50(2), 191–204.Google Scholar
  66. Happé, F. G. E. (1997). Central coherence and theory of mind in autism: Reading homographs in context. British Journal of Developmental Psychology, 15(1), 1–12.Google Scholar
  67. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.Google Scholar
  68. Happé, F., & Frith, U. (2009). The beautiful otherness of the autistic mind. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1345–1350.Google Scholar
  69. Happé, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9(10), 1218–1220.Google Scholar
  70. Harkness, D. L. (2015). From explanatory ambition to explanatory power: A commentary on Jakob Hohwy. In T. Metzinger & J. M. Windt (Eds.), Open MIND (pp. 1–9). Frankfurt am Main: MIND Group.Google Scholar
  71. Hellendoorn, A., Wijnroks, L., & Leeseman, P. P. (2015). Unraveling the nature of autism: Finding order amid change. Frontiers in Psychology, 6, 1–16.Google Scholar
  72. Heyes, C. (2012). Grist and mills: On the cultural origins of cultural learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 2181–2191.Google Scholar
  73. Hohwy, J. (2011). Phenomenal variability and introspective reliability. Mind & Language, 26(3), 261–286. doi: 10.1111/j.1468-0017.2011.01418.x.Google Scholar
  74. Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology. doi: 10.3389/fpsyg.2012.00096.
  75. Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.Google Scholar
  76. Hohwy, J. (2015a). The neural organ explains the mind. In T. Metzinger & J. M. Windt (Eds.) Open MIND (pp. 1–22). Frankfurt am Main: MIND Group.Google Scholar
  77. Hohwy, J. (2015b). Prediction error minimization, mental and developmental disorder, and statistical theories of consciousness. In R. J. Gennaro (Ed.), Philosophical psychopathology. Disturbed consciousness. New essays on psychopathology and theories of consciousness (pp. 293–324). Cambridge, MA: MIT Press.Google Scholar
  78. Hohwy, J. (2016). The self-evidencing brain. Noûs, 50(2), 259–285.Google Scholar
  79. Hohwy, J., Paton, B., & Palmer, C. (2016). Distrusting the present. Phenomenology and the Cognitive Sciences, 15(3), 315–335.Google Scholar
  80. Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108(3), 687–701.Google Scholar
  81. Huemer, S. V., & Mann, V. (2010). A comprehensive profile of decoding and comprehension in autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(4), 485–493.Google Scholar
  82. Huestegge, L., Radach, R., Corbic, D., & Huestegge, S. M. (2009). Oculomotor and linguistic determinants of reading development: A longitudinal study. Vision Research, 49(24), 2948–2959.Google Scholar
  83. Jones, C. R. G., Happé, F., Golden, H., Marsden, A. J. S., Tregay, J., Simonoff, E., et al. (2009). Reading and arithmetic in adolescents with autism spectrum disorders: Peaks and dips in attainment. Neuropsychology, 23(6), 718–728.Google Scholar
  84. Joseph, H. S. S. L., & Liversedge, S. P. (2013). Children’s and adults’ on-line processing of syntactically ambiguous sentences during reading. PLoS One, 8(1), e54141.Google Scholar
  85. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127(8), 1811–1821.Google Scholar
  86. Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: Thinking in pictures with decreased functional connectivity. Brain, 129(9), 2484–2493.Google Scholar
  87. Kellert, S., Longino, H., & Waters, C. K. (2006). Introduction: The pluralist stance. In C. K. Kellert, S. Longino, & C. K. Waters (Eds.), Minnesota studies in philosophy of science, vol. 19: Scientific pluralism (pp. vii–xxix). Minneapolis: University of Minnesota Press.Google Scholar
  88. Kendal, J. R. (2011). Cultural niche construction and human learning environments: Investigating sociocultural perspectives. Biological Theory, 6(3), 241–250.Google Scholar
  89. Kherif, F., Josse, G., & Price, C. J. (2011). Automatic top-down processing explains common left occipito-temporal responses to visual words and objects. Cerebral Cortex, 21(1), 103–114.Google Scholar
  90. Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4(11), 1–12.Google Scholar
  91. Kim, J. (2005). Physicalism, or something near enough. New Jersey: Princeton University Press.Google Scholar
  92. Kline, M. A. (2015). How to learn about teaching: An evolutionary framework for the study of teaching behavior in humans and other animals. Behavioral and Brain Sciences. doi: 10.1017/S0140525X14000090.
  93. Laland, K. N., & O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory, 6(3), 191–202.Google Scholar
  94. Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2014.00302.
  95. MacKinnon, K. C., & Fuentes, A. (2012). Primate social cognition, human evolution, and niche construction: A core context for neuroanthropology. In D. H. Lende & G. Downey (Eds.), The encultured brain: An introduction to neuroanthropology (pp. 67–102). Cambridge, MA: MIT Press.Google Scholar
  96. Maurer, U., Brem, S., Kranz, F., Bucher, K., Benz, R., Halder, P., et al. (2006). Coarse neural tuning for print peaks when children learn to read. NeuroImage, 33(2), 749–758.Google Scholar
  97. McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299.Google Scholar
  98. Menary, R. (2006). Attacking the bounds of cognition. Philosophical Psychology, 19(3), 329–344.Google Scholar
  99. Menary, R. (2007). Cognitive integration: Mind and cognition unbounded. Basingstoke, NY: Palgrave Macmillan.Google Scholar
  100. Menary, R. (2009). Intentionality, cognitive integration and the continuity thesis. Topoi, 28(1), 31–43.Google Scholar
  101. Menary, R. (Ed.). (2010). The extended mind. Cambridge, MA: MIT Press.Google Scholar
  102. Menary, R. (2010a). Cognitive integration and the extended mind. In R. Menary (Ed.), The extended mind (pp. 227–243). Cambridge, MA: MIT Press.Google Scholar
  103. Menary, R. (2010b). Dimensions of mind. Phenomenology and the Cognitive Sciences, 9(4), 561–578. doi: 10.1007/s11097-010-9186-7.Google Scholar
  104. Menary, R. (2010c). The holy grail of cognitivism: A response to Adams and Aizawa. Phenomenology and the Cognitive Sciences, 9(4), 605–618. doi: 10.1007/s11097-010-9185-8.Google Scholar
  105. Menary, R. (2012). Cognitive practices and cognitive character. Philosophical Explorations, 15(2), 147–164.Google Scholar
  106. Menary, R. (2013a). Cognitive integration, enculturated cognition and the socially extended mind. Cognitive Systems Research, 25–26, 26–34.Google Scholar
  107. Menary, R. (2013b). The enculturated hand. In Z. Radman (Ed.), The hand, an organ of the mind: What the manual tells the mental (pp. 561–593). Cambridge, MA: MIT Press.Google Scholar
  108. Menary, R. (2014). Neural plasticity, neuronal recycling and niche construction. Mind & Language, 29(3), 286–303.Google Scholar
  109. Menary, R. (2015a). Mathematical cognition: A case of enculturation. In T. Metzinger & J. M. Windt (Eds.), Open MIND (pp. 1–20). Frankfurt am Main: MIND Group.Google Scholar
  110. Menary, R. (2015b). What? Now: Predictive coding and enculturation. In T. Metzinger & J. M. Windt (Eds.), Open MIND. Frankfurt am Main: MIND Group.Google Scholar
  111. Menary, R. (2016). Pragmatism and the pragmatic turn in cognitive science. In D. Engel, K. Andreas, K. Friston, & Kragic (Eds.), Where is the action? The pragmatic turn in cognitive science (pp. 219–237). Cambridge, Mass: MIT Press.Google Scholar
  112. Menary, R., & Kirchhoff, M. (2014). Cognitive transformations and extended expertise. Educational Philosophy and Theory, 46(6), 610–623.Google Scholar
  113. Metzinger, T. (2013). The myth of cognitive agency: Subpersonal thinking as a cyclically recurring loss of mental autonomy. Frontiers in Psychology, 4, 1–19.Google Scholar
  114. Müller, R.-A., Shih, P., Keehn, B., Deyoe, J. R., Leyden, K. M., & Shukla, D. K. (2011). Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex, 21(10), 2233–2243.Google Scholar
  115. Nation, K., Clarke, P., Wright, B., & Williams, C. (2006). Patterns of reading ability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 36(7), 911–919.Google Scholar
  116. Newman, T. M., Macomber, D., Naples, A. J., Babitz, T., Volkmar, F., & Grigorenko, E. L. (2007). Hyperlexia in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(4), 760–774.Google Scholar
  117. O’Connor, I. M., & Klein, P. D. (2004). Exploration of strategies for facilitating the reading comprehension of high-functioning students with autism spectrum disorders. Journal of Autism and Developmental Disorders, 34(2), 115–127.Google Scholar
  118. Odling-Smee, J., & Laland, K. N. (2011). Ecological inheritance and cultural inheritance: What are they and how do they differ? Biological Theory, 6(3), 220–230.Google Scholar
  119. Palmer, C. J., Paton, B., Hohwy, J., & Enticott, P. G. (2013). Movement under uncertainty: The effects of the rubber-hand illusion vary along the nonclinical autism spectrum. Neuropsychologia, 51(10), 1942–1951.Google Scholar
  120. Palmer, C. J., Paton, B., Kirkovski, M., Enticott, P. G., & Hohwy, J. (2015). Context sensitivity in action decreases along the autism spectrum: A predictive processing perspective. In Proceedings of the royal society B: Biological sciences, 282(1802). doi: 10.1098/rspb.2014.1557.
  121. Palmer, C. J., Seth, A., & Hohwy, J. (2015). The felt presence of other minds: Predictive processing, counterfactual predictions, and mentalising in autism. Consciousness and Cognition, 36, 376–389.Google Scholar
  122. Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510.Google Scholar
  123. Phillips, J. G., Ogeil, R. P., & Best, C. (2009). Motor constancy and the upsizing of handwriting. Human Movement Science, 28(5), 578–587.Google Scholar
  124. Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283–311.Google Scholar
  125. Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19(3), 473–481. doi: 10.1016/S1053-8119(03)00084-3.Google Scholar
  126. Price, C. J., & Devlin, J. T. (2004). The pro and cons of labelling a left occipitotemporal region “the visual word form area”. NeuroImage, 22(1), 477–479.Google Scholar
  127. Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15(6), 246–253.Google Scholar
  128. Quattrocki, E., & Friston, K. (2014). Autism, oxytocin and interoception. Neuroscience & Biobehavioral Reviews, 47, 410–430.Google Scholar
  129. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. doi: 10.1037/0033-2909.124.3.372.Google Scholar
  130. Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457–1506. doi: 10.1080/17470210902816461.Google Scholar
  131. Rayner, K., Cook, A. E., Juhasz, B. J., & Frazier, L. (2006). Immediate disambiguation of lexically ambiguous words during reading: Evidence from eye movements. British Journal of Psychology, 97(4), 467–482.Google Scholar
  132. Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M. S. (2001). How psychological science informs the teaching of reading. Psychological Science in the Public Interest, 2(2), 31–74. doi: 10.1111/1529-1006.00004.Google Scholar
  133. Rayner, K., Juhasz, B. J., & Pollatsek, A. (2007). Eye movements during reading. In M. J. Snowling & C. Hulme (Eds.), Blackwell handbooks of developmental psychology. The science of reading: A handbook (pp. 79–97). Malden, MA: Blackwell.Google Scholar
  134. Robinson, A. (2009). Writing and script?: A very short introduction. Oxford: Oxford University Press.Google Scholar
  135. Rowlands, M. (1999). The body in mind: Understanding cognitive processes. Cambridge studies in philosophy. Cambridge: Cambridge University Press.Google Scholar
  136. Rupert, R. D. (2004). Challenges to the hypothesis of extended cognition. Journal of Philosophy, 101(8), 389–428.Google Scholar
  137. Sansosti, F. J., Was, C., Rawson, K. A., & Remaklus, B. L. (2013). Eye movements during processing of text requiring bridging inferences in adolescents with higher functioning autism spectrum disorders: A preliminary investigation. Research in Autism Spectrum Disorders, 7(12), 1535–1542.Google Scholar
  138. Seassau, M., Bucci, M.-P., & Paterson, K. (2013). Reading and visual search: A developmental study in normal children. PLoS One, 8(7). doi: 10.1371/journal.pone.0070261.
  139. Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565–573.Google Scholar
  140. Seth, A. K. (2015). The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies. In T. Metzinger & J. M. Windt (Eds.), Open MIND (pp. 1–24). Frankfurt am Main: MIND Group.Google Scholar
  141. Shimahara, N. (1970). Enculturation—A reconsideration. Current Anthropology, 11(2), 143–154.Google Scholar
  142. Silberman, S. (2015). Neurotribes: The legacy of autism and the future of neurodiversity. New York: Penguin.Google Scholar
  143. Snowling, M. J. (2000). Dyslexia (2nd ed.). Malden, MA: Blackwell.Google Scholar
  144. Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. Malden, MA: Blackwell.Google Scholar
  145. Sterelny, K. (2012). The evolved apprentice: How evolution made humans unique. The Jean Nicod lectures (Vol. 2012). Cambridge, MA: The MIT Press.Google Scholar
  146. Stotz, K. (2010). Human nature and cognitive-developmental niche construction. Phenomenology and the Cognitive Sciences, 9(4), 483–501. doi: 10.1007/s11097-010-9178-7.Google Scholar
  147. Stotz, K. (2014). Extended evolutionary psychology: The importance of transgenerational developmental plasticity. Frontiers in Psychology. doi: 10.3389/fpsyg.2014.00908.
  148. Supekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D., Kenworthy, L. E., et al. (2013). Brain hyperconnectivity in children with autism and its links to social deficits. Cell Reports, 5(3), 738–747.Google Scholar
  149. Tatone, D., & Csibra, G. (2015). Learning in and about opaque worlds. Behavioral and Brain Sciences, 38, 49–50.Google Scholar
  150. Thompson, E. (2011). Living ways of sense making. Philosophy Today, 55, 114–123.Google Scholar
  151. Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.Google Scholar
  152. Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6(7), 767–773.Google Scholar
  153. Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2013.00458.
  154. van Atteveldt, N., & Ansari, D. (2014). How symbols transform brain function: A review in memory of Leo Blomert. Trends in Neuroscience and Education, 3(2), 44–49.Google Scholar
  155. van Bouwel, J., Weber, E., & de Vreese, L. (2011). Indispensibility arguments in favour of reductive explanations. Journal for General Philosophy of Science, 42(1), 33–46.Google Scholar
  156. van Boxtel, J. J. A., & Lu, H. (2013). A predictive coding perspective on autism spectrum disorders. Frontiers in Psychology. doi: 10.3389/fpsyg.2013.00019.
  157. van de Cruys, S., Evers, K., van der Hallen, R., van Eylen, L., Boets, B., de-Wit, L., et al. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 221(4), 649–675.Google Scholar
  158. Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55(1), 143–156.Google Scholar
  159. Vogel, A. C., Church, J. A., Power, J. D., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2013). Functional network architecture of reading-related regions across development. Brain and Language, 125(2), 231–243. doi: 10.1016/j.bandl.2012.12.016.Google Scholar
  160. Vogel, A. C., Petersen, S. E., & Schlaggar, B. L. (2014). The VWFA: It’s not just for words anymore. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2014.00088.
  161. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  162. Wells, A. J. (2002). Gibson’s affordances and Turing’s theory of computation. Ecological Psychology, 14(3), 140–180.Google Scholar
  163. Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology, 17(2), 89–100.Google Scholar
  164. Ziegler, J. C., & Goswami, U. (2006). Becoming literate in different languages: Similar problems, different solutions. Developmental Science, 9(5), 429–436.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Center for Experimental Psychology and Cognitive ScienceJustus Liebig University of GiessenGiessenGermany

Personalised recommendations