Advertisement

Synthese

, Volume 195, Issue 5, pp 1849–1872 | Cite as

What makes unique hues unique?

  • Valtteri Arstila
S.I.: Neuroscience and Its Philosophy

Abstract

There exist two widely used notions concerning the structure of phenomenal color space. The first is the notion of unique/binary hue structure, which maintains that there are four unique hues from which all other hues are composed. The second notion is the similarity structure of hues, which describes the interrelations between the hues and hence does not divide hues into two types as the first notion does. Philosophers have considered the existence of the unique/binary hue structure to be empirically and phenomenally well-grounded, and the structure has been considered to be primary because this can account for the similarity structure. Consequently, the unique/binary hue structure has played a central role in color philosophy. This calls for the assessment of the justification for its existence carried out in this paper. It is concluded that, despite the prevalent view among philosophers, none of their reasons for endorsing the existence of the unique/binary hue structure are justified. Since the notion of the unique/binary hue structure appears intuitively plausible for many, however, a sketch explaining this intuition is outlined at the end.

Keywords

Color space Unique/binary hues Psychophysics Color cognition 

References

  1. Abramov, I., & Gordon, J. (1994). Color appearance: On seeing red-or yellow, or green, or blue. Annual Review of Psychology, 45, 451–485. doi: 10.1146/annurev.ps.45.020194.002315.CrossRefGoogle Scholar
  2. Arstila, V. (2003). True colours, false theories. Australasian Journal of Philosophy, 81(1), 41–50.CrossRefGoogle Scholar
  3. Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. Berkeley: University of California Press.Google Scholar
  4. Bosten, J. M., & Boehm, A. E. (2014). Empirical evidence for unique hues? Journal of the Optical Society of America A, 31(4), A385–A393.CrossRefGoogle Scholar
  5. Bosten, J., & Lawrance-Owen, A. (2014). No difference in variability of unique hue selections and binary hue selections. Journal of the Optical Society of America, 31(4), A357–A364.CrossRefGoogle Scholar
  6. Bradley, P., & Tye, M. (2001). Of colors, kestrels, caterpillars, and leaves. Journal of Philosophy, 98, 469–487.CrossRefGoogle Scholar
  7. Brentano, F. (1979). Vom Phänomenalen Grün. In F. Brentano (Ed.), Untersuchungen zur Sinnespsychologie. Hamburg: Felix Meiner Verlag.Google Scholar
  8. Byrne, A. (2003). Color and similarity. Philosophy and Phenomenological Research., LXVI, 641–665.CrossRefGoogle Scholar
  9. Byrne, A., & Hilbert, D. R. (1997). Colors and reflectances. In A. Byrne & D. R. Hilbert (Eds.), Readings on color, volume 1: The philosophy of color (pp. 263–288). Cambridge, MA: The MIT Press.Google Scholar
  10. Byrne, A., & Hilbert, D. R. (2003). Color realism and color science. Behavioral and Brain Sciences, 26, 3–21.Google Scholar
  11. Chichilnisky, E. J., & Wandell, B. A. (1999). Trichromatic opponent color classification. Vision Research, 39, 3444–3458.CrossRefGoogle Scholar
  12. Churchland, P. (2005). Chimerical colors: Some phenomenological predictions from cognitive neuroscience. Philosophical Psychology, 18(5), 527–560.CrossRefGoogle Scholar
  13. Clark, A. (1993). Sensory Qualities. Oxford: Clarendon Press.Google Scholar
  14. Cohen, J. (2003). On the structural properties of the colors. Australasian Journal of Philosophy, 81, 78–95.CrossRefGoogle Scholar
  15. Conway, B. R., & Stoughton, C. M. (2009). Response: Towards a neural representation for unique hues. Current Biology, 19(11), R442–R443. doi: 10.1016/j.cub.2009.04.056.
  16. Conway, B. R., & Tsao, D. Y. (2009). Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proceedings of the National Academy of Sciences, 106(42), 18034–18039. doi: 10.1073/pnas.0810943106.
  17. Crane, H. D., & Piantanida, T. P. (1983). On seeing reddish green and yellowish blue. Science, 221(4615), 1078–1080.CrossRefGoogle Scholar
  18. Davidoff, J., Davies, I., & Roberson, D. (1999). Colour categories in a stone-age tribe. Nature, 398(6724), 203–4.CrossRefGoogle Scholar
  19. De Valois, R. L., De Valois, K. K., Switkes, E., & Mahon, L. (1997). Hue scaling of isoluminant and cone-specific lights. Vision Research, 37(7), 885–897.CrossRefGoogle Scholar
  20. Gage, J. (1999). Color and culture: Practice and meaning from antiquity to abstraction. Berkeley, CA: University of California Press.Google Scholar
  21. Hardin, C. L. (1988). Color for philosophers, unweaving the rainbow. Indianapolis: Hackett Publishing Company.Google Scholar
  22. Hardin, C. L. (2003). A spectral reflectance doth not a color make. The Journal of Philosophy, 100(4), 191–202.CrossRefGoogle Scholar
  23. Heider, E. R. (1972). Universals in color naming and memory. Journal of Experimental Psychology, 93(1), 10–20.CrossRefGoogle Scholar
  24. Heider, E. R., & Olivier, D. C. (1972). The structure of the color space in naming and memory for two languages. Cognitive Psychology, 3(2), 337–354.CrossRefGoogle Scholar
  25. Hering, E. (1878). Zur lehre vom lichtsinne (on the theory of sensibility to light). Wien: Carl Gerold’s Sohn.Google Scholar
  26. Hilbert, D. R. (1992). What is color vision? Philosophical Studies, 68, 351–370.CrossRefGoogle Scholar
  27. Hurvich, L., & Jameson, D. (1957). An opponent-process theory of color vision. Psychological Review, 64(6), 384–404.CrossRefGoogle Scholar
  28. Jameson, K. (2005a). On the role of culture in color naming: Remarks on the articles of Paramei, Kay, Roberson, and Hardin on the topic of cognition, culture, and color experience. Cross Cultural Research, 39(1), 88–106.CrossRefGoogle Scholar
  29. Jameson, K. (2005b). Culture and cognition: What is universal about the representation of color experience? Journal of Cognition and Culture, 5(3–4), 293–347.CrossRefGoogle Scholar
  30. Jameson, K. (2010). Where in the world color survey is the support for the hering primaries as the basis for color categorization? In J. Cohen & M. Matthen (Eds.), Color ontology and color science (pp. 179–202). Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  31. Jameson, K., & Alvarado, N. (2003). Differences in color naming and color salience in Vietnamese and English. Color Research and Application, 28(2), 113–138.CrossRefGoogle Scholar
  32. Jameson, K., & D’Andrade, R. G. (1997). It’s not really red, green, yellow, blue: An inquiry into cognitive color space. In C. L. Hardin & L. Maffi (Eds.), Color categories in thought and language (pp. 295–319). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Johnston, M. (1992). How to speak of the color. Philosophical Studies, 68, 221–263.CrossRefGoogle Scholar
  34. Kay, P., & Regier, T. (2003). Resolving the question of color naming universals. Proceedings of the National Academy of Sciences, 100(15), 9085–9089.CrossRefGoogle Scholar
  35. Kiper, D. C., Fenstemaker, S. B., & Gegenfurtner, K. R. (1997). Chromatic properties of neurons in macaque area V2. Visual Neuroscience, 14(6), 1061–1072. doi: 10.1017/S0952523800011779.
  36. Komatsu, H., Ideura, Y., Kaji, S., & Yamane, S. (1992). Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. The Journal of Neuroscience, 12(2), 408–424.Google Scholar
  37. Krauskopf, J., Williams, D. R., & Heeley, D. W. (1982). Cardinal directions of color space. Vision Research, 22, 1123–1131.CrossRefGoogle Scholar
  38. Kuehni, R. G. (2005). Focal color variability and unique hue stimulus variability. Journal of Cognition and Culture, 5(3), 409–426. doi: 10.1163/156853705774648554.CrossRefGoogle Scholar
  39. Ladd-Franklin, C. (1916). On color theories and chromatic sensations. Psychological Review, 23(3), 237–249.CrossRefGoogle Scholar
  40. Ladd-Franklin, C. (1929). Colour and colour theories. New York: Harcourt, Brace & Company Inc.Google Scholar
  41. Lennie, P., Krauskopf, J., & Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. The Journal of Neuroscience, 10(2), 649–669.Google Scholar
  42. Malkoc, G., Kay, P., & Webster, M. A. (2005). Variations in normal color vision. IV. Binary hues and hue scaling. Journal of the Optical Society of America A, 22(10), 2154–2168.CrossRefGoogle Scholar
  43. Miller, D. (1997). Beyond the elements: Investigations of hue. In C. L. Hardin & L. Maffi (Eds.), Color categories in thought and language. Cambridge, MA: Cambridge University Press.Google Scholar
  44. Mollon, J. D. (2009). A neural basis for unique hues? Current Biology, 19(11), R441–R442.Google Scholar
  45. Newton, I. (1704/1952). Opticks. London: Smith & Walford/Dover.Google Scholar
  46. Regier, T., Kay, P., & Khetarpal, N. (2007). Color naming reflects optimal partitions of color space. Proceedings of the National Academy of Sciences USA, 104(4), 1436–1441.CrossRefGoogle Scholar
  47. Regier, T., Kay, P., & Khetarpal, N. (2009). Color naming and the shape of color space. Language, 85(4), 884–892.CrossRefGoogle Scholar
  48. Roberson, D., Davidoff, J., Davies, I., & Shapiro, L. (2005). Color categories: Evidence for the cultural relativity hypothesis. Cognitive Psychology, 50, 378–411.CrossRefGoogle Scholar
  49. Roberson, D., Davies, I., & Davidoff, J. (2000). Colour categories are not universal: Replications and new evidence from a stone-age culture. Journal of Experimental Psychology General, 129, 369–398.CrossRefGoogle Scholar
  50. Saunders, B. A. C., & van Brakel, J. (1997). Are there nontrivial constraints on colour categorization. Behavioral and Brain Sciences, 20, 167–179.CrossRefGoogle Scholar
  51. Schein, S. J., & Desimone, R. (1990). Spectral properties of V4 neurons in the macaque. The Journal of Neuroscience, 10(10), 3369–3389.CrossRefGoogle Scholar
  52. Sternheim, C. E., & Boynton, R. M. (1966). Uniqueness of perceived hues investigated with a continuous judgmental technique. Journal of Experimental Psychology, 72, 770–776.CrossRefGoogle Scholar
  53. Stoughton, C. M., & Conway, B. R. (2008). Neural basis for unique hues. Current Biology, 18(16), R698–R699. doi: 10.1016/j.cub.2008.06.018.
  54. Suarez, J., & Nida-Rümelin, M. (2009). Reddish–green: A challenge for modal claims about phenomenal structure. Philosophy and Phenomenological Research, 78, 346–391.CrossRefGoogle Scholar
  55. van Brakel, J. (1994). The ignis fatuus of semantic universalia: The case of colour. British Journal of Philosophy of Science, 45, 770–783.CrossRefGoogle Scholar
  56. von Goethe, J. W. (1810). Zur Farbenlehre (Theory of Colours). Tübingen.Google Scholar
  57. von Helmholtz, H. L. F. (1867). Handbuch der physiologischen optik (handbook of physiological optics). Leipzig: von Leopold Voss.Google Scholar
  58. Webster, M. A., Miyahara, E., Malkoc, G., & Raker, V. E. (2000). Variations in normal color vision. II. Unique hues. Journal of Optical Society of America, A 17(9), 1545–1555.CrossRefGoogle Scholar
  59. Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. PNAS, 104, 7780–7785.CrossRefGoogle Scholar
  60. Wool, L. E., Komban, S. J., Kremkow, J., Jansen, M., Alonso, J.-M., Li, X., et al. (2015). Salience of unique hues and implications for color theory. Journal of Vision, 15(2), 1–11.CrossRefGoogle Scholar
  61. Wooten, B., & Miller, D. L. (1997). The psychophysics of color. In C. L. Hardin & L. Maffi (Eds.), Color categories in thought and language. Cambridge: Cambridge University Press.Google Scholar
  62. Wright, W. (forthcoming). Eliminativism. In D. Brown & F. Macpherson (Eds.), The Routledge handbook of philosophy of color. Routledge.Google Scholar
  63. Wright, W. (2013). Psychologically pure colors. In R. Luo (Ed.), Encyclopedia of color science and technology (pp. 1–4). New York: Springer. doi: 10.1007/978-3-642-27851-8_78-8.Google Scholar
  64. Xiao, Y., Wang, Y., & Felleman, D. (2003). A spatially organized representation of colour in macaque cortical area V2. Nature, 421, 535–539. doi: 10.1038/nature01372.
  65. Zeki, S. (1983). Colour coding in the celebral cortex: the reaction of cells in monkey visual cortex to wavelenghts and colours. Neuroscience, 9, 741–765.CrossRefGoogle Scholar
  66. Zeki, S., & Marini, L. (1998). Three cortical stages of colour processing in the human brain. Brain, 121, 1669–1685.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of TurkuTurkuFinland

Personalised recommendations