, Volume 195, Issue 4, pp 1569–1585 | Cite as

Relativistic frameworks and the case for (or against) incommensurability

  • Jean-Michel Delhôtel


The aim of this paper is to address, from a fresh perspective, the question of whether Newtonian mechanics can legitimately be regarded as a limiting case of the special theory of relativity (STR), or whether the two theories should be deemed so radically different as to be incommensurable in the sense of Feyerabend and Kuhn. Firstly, it is argued that focusing on the concept of mass and its transformation across the two varieties of mechanics is bound to leave the issue unsettled. On the one hand, the idea of a speed-dependent ‘relativistic mass’, which has been invoked in support of incommensurability claims, results from a particular, often innocuous but unnecessary and inappropriate reading of certain basic formulae. On the other hand, the existence of an invariant rest mass in STR does not warrant its identification with the Newtonian mass, be it in a suitable limit. This invariant notwithstanding, those who follow Feyerabend and Kuhn can still uphold their views with regard to the two theories. It is shown, however, that the two mechanics embody relativistic frameworks that are direct consequences of the same set of assumptions. As a result, if Newton’s mechanics cannot simply be regarded as a limiting case of STR, the possibility of ‘recovering’ from the latter some elements of the former can be traced to a common source, belying claims of logical disconnection between the two theories.


Special theory of relativity Relativistic mass Covariance Incommensurability Theory change 


  1. Adler, C. G. (1987). Does mass really depend on velocity, dad? American Journal of Physics, 55(8), 739–743.CrossRefGoogle Scholar
  2. Bergmann, P. G. (1942). Introduction to the theory of relativity. New York: Prentice-Hall.Google Scholar
  3. Born, M. (1962). Einstein’s theory of relativity. New York: Dover (First German edition: ‘Die Relativitätstheorie Einsteins und ihre physikalische Grundlagen gemeinverständlich dargestellt’. Berlin: Springer, 1920).Google Scholar
  4. Einstein, A. (1905). Zur Elektrodynamik Bewegter Körper. Annalen der Physik, 17, 891–921.CrossRefGoogle Scholar
  5. Einstein, A. (1935). Elementary derivation of the equivalence of mass and energy. Bulletin of the American Mathematical Society, 41, 223–230.CrossRefGoogle Scholar
  6. Feigenbaum, M. J. (2008). The theory of relativity—Galileo’s child. Retrieved Sept 1, 2016 from ArXiv e-print arXiv:0806.1234.
  7. Feyerabend, P. K. (1962). Explanation, reduction and empiricism. In H. Feigl & G. Maxwell (Eds.), Scientific explanation, space, and time (Vol. 3, pp. 28–97). Minnesota studies in the philosophy of science. Minneapolis: University of Minnesota Press.Google Scholar
  8. Feyerabend, P. K. (1981). Consolations for the specialist. In P. K. Feyerabend (Ed.), Problems of empiricism. philosophical papers (Vol. 2, pp. 131–167). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Feyerabend, P. K. (1981b). Realism, rationalism and scientific method. Philosophical papers. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Feyerabend, P. K. (1987). Farewell to reason. London: Verso.Google Scholar
  11. Feynman, R. P., Leighton, R., & Sands, M. (1965). The Feynman lectures on physics (Vol. 1). Reading MA: Addison-Wesley.Google Scholar
  12. Feynman, R. P. (1998). Six not-so-easy pieces. London: Penguin Books.Google Scholar
  13. Flores, F. (2005). Interpretations of Einstein’s equation \(E = mc^{2}\). International Studies in the Philosophy of Science, 19(3), 245–260.CrossRefGoogle Scholar
  14. Frank, P., & Rothe, H. (1911). Über die Transformationen der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme. Annalen der Physik, 34, 825–855.CrossRefGoogle Scholar
  15. Jammer, M. (2000). Concepts of mass in contemporary physics and philosophy. Princeton, NJ: Princeton University Press.Google Scholar
  16. Kuhn, T. S. (1970). The structure of scientific revolutions (enlarged 2nd ed.). Chicago, IL: University of Chicago Press.Google Scholar
  17. Lee, A. R., & Kalotas, T. M. (1975). Lorentz transformation from the first postulate. American Journal of Physics, 43, 434–437.CrossRefGoogle Scholar
  18. Lévy-Leblond, J.-M. (1976). One more derivation of the Lorentz transformation. American Journal of Physics, 44, 271–277.CrossRefGoogle Scholar
  19. Mermin, N. D. (1984). Relativity without Light. American Journal of Physics, 52, 119–124.CrossRefGoogle Scholar
  20. Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W.H. Freeman and Company.Google Scholar
  21. Okun, L. B. (1989). The concept of mass. Physics Today, 42(6), 31–36.CrossRefGoogle Scholar
  22. Okun, L. B. (2008). The Einstein formula \(E_{0} = mc^{2}\). “Isn’t the Lord laughing?”. Physics–Uspekh, 51, 513–527. English translation, Retrieved from arXiv: 0808.0437.
  23. Okun, L. B. (2009). Mass versus relativistic and rest masses. American Journal of Physics, 77(5), 430–431.CrossRefGoogle Scholar
  24. Pauli, W. (1958). Theory of Relativity (First German ed. 1921). Oxford: Pergamon.Google Scholar
  25. Post, H. R. (1971). Correspondence, invariance and heuristics. Studies in the History and Philosophy of Science, 2(3), 213–255.CrossRefGoogle Scholar
  26. Rivadulla, A. (2004). The Newtonian limit of relativity theory and the rationality of theory change. Synthese, 141, 417–429.CrossRefGoogle Scholar
  27. Sandin, T. R. (1991). In defense of relativistic mass. American Journal of Physics, 59(11), 1032–1036.CrossRefGoogle Scholar
  28. Torretti, R. (1990). Creative understanding. Philosophical reflections on physics. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  29. Von Ignatowsky, W. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Physikalische Zeitschrift, 11, 972–976.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.LondonUK

Personalised recommendations