Synthese

pp 1–19 | Cite as

A metasemantic challenge for mathematical determinacy

S.I.: Foundations of Mathematics

Abstract

This paper investigates the determinacy of mathematics. We begin by clarifying how we are understanding the notion of determinacy (Sect. 1) before turning to the questions of whether and how famous independence results bear on issues of determinacy in mathematics (Sect. 2). From there, we pose a metasemantic challenge for those who believe that mathematical language is determinate (Sect. 3), motivate two important constraints on attempts to meet our challenge (Sect. 4), and then use these constraints to develop an argument against determinacy (Sect. 5) and discuss a particularly popular approach to resolving indeterminacy (Sect. 6), before offering some brief closing reflections (Sect. 7). We believe our discussion poses a serious challenge for most philosophical theories of mathematics, since it puts considerable pressure on all views that accept a non-trivial amount of determinacy for even basic arithmetic.

Keywords

Determinacy Indeterminacy Metasemantics Philosophy of mathematics Incompleteness 

References

  1. Balaguer, M. (1996). Towards a nominalization of quantum mechanics. Mind, 105(418), 209–226.CrossRefGoogle Scholar
  2. Beltrami, E. (1868a). Saggio di interpretazione della geometria non-euclidea. Giornale di Mathematiche, VI, 285–315.Google Scholar
  3. Beltrami, E. (1868b). Teoria fondamentale degli spazii di curvatura costante. Annali di Matematica Pura ed Applicata, 2, 232–255.CrossRefGoogle Scholar
  4. Benacerraf, P. (1967). God, the Devil, and Gödel. The Monist, 51, 9–32.CrossRefGoogle Scholar
  5. Benacerraf, P. (1973). Mathematical truth. Journal of Philosophy, 70, 661–680.CrossRefGoogle Scholar
  6. Boolos, G. (1990). On “seeing” the truth of the Gödel sentence. Behavioral and Brain Sciences, 13(4), 655–656.CrossRefGoogle Scholar
  7. Button, T., & Smith, P. (2011). The philosophical significance of Tennenbaum’s theorem. Philosophia Mathematica (III), 00, 1–8.Google Scholar
  8. Carnap, R. (1934). The logical syntax of language. London: Routledge & Kegan Paul.Google Scholar
  9. Chalmers, D. J. (2012). Constructing the world. Oxford: Oxford University Press.Google Scholar
  10. Clarke-Doane, J. (2013). What is absolute undecidability? Noûs, 47(3), 467–481.CrossRefGoogle Scholar
  11. Cohen, P. (1963). The independence of the continuum hypothesis I. Proceedings of the National Academy of Sciences of the United States, 50(6), 1143–1148.CrossRefGoogle Scholar
  12. Cohen, P. (1964). The independence of the continuum hypothesis II. Proceedings of the National Academy of Sciences of the United States, 51(1), 105–110.CrossRefGoogle Scholar
  13. Dean, W. (2002). Models and recursivity. Replacement posted in http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.446
  14. Field, H. (1980). Science without numbers. Princeton: Princeton University Press.Google Scholar
  15. Field, H. (1984). Can we dispense with space-time. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1984(2), 33–90.Google Scholar
  16. Field, H. (1989). Realism, mathematics and modality. Oxford: Blackwell.Google Scholar
  17. Field, H. (1994). Are our mathematical and logical concepts highly indeterminate. In P. French, T. Uehling, & H. Wettstein (Eds.), Midwest studies in philosophy. New York: Blackwell.Google Scholar
  18. Field, H. (1998a). Do we have a determinate conception of finiteness and natural number. In M. Schirn (Ed.), The philosophy of mathematics today. Oxford: Oxford University Press.Google Scholar
  19. Field, H. (1998b). Which undecidable mathematical sentences have determinate truth values. In H. G. Dales & G. Olivari (Eds.), Truth in mathematics. Oxford: Oxford University Press.Google Scholar
  20. Field, H. (2001). Truth and the absence of fact. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Gaifman, H. (2004). Non-standard models in a broader perspective. In A. Enayat & R. Kossak (Eds.), Contemporary mathematics: Nonstandard models of arithmetic and set theory (Vol. 361, pp. 1–22). Providence: American Mathematical Society.CrossRefGoogle Scholar
  22. Gödel, K. (1931). On formally undecidable propositions of principia mathematica and related systems I. Monatshefte für Mathematik und Physik, 38, 173–198.CrossRefGoogle Scholar
  23. Gödel, K. (1939). Consistency proof for the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences, 25(4), 220–224.CrossRefGoogle Scholar
  24. Gödel, K. (1964). What is Cantor’s continuum problem. In P. Benacerraf & H. Putnam (Eds.), Philosophy of Mathematics: Selected Readings (2nd ed.). New York: Cambridge University Press.Google Scholar
  25. Goodstein, R. (1944). On the restricted ordinal theorem. Journal of Symbolic Logic, 9, 33–41.CrossRefGoogle Scholar
  26. Hale, B. (1987). Abstract objects. Oxford: Basil Blackwell.Google Scholar
  27. Hale, B., & Wright, C. (2001). The reason s proper study. Oxford: Oxford University Press.CrossRefGoogle Scholar
  28. Horwich, P. (1998). Truth (2nd ed.). Oxford: Clarendon Press.CrossRefGoogle Scholar
  29. Isaacson, D. (2011). The reality of mathematics and the case of set theory. In Z. Novak & A. Simonyi (Eds.), Truth, reference and realism (pp. 1–76). Budapest: Central European University Press.Google Scholar
  30. Jech, T. (1967). Non-provability of Souslin’s hypothesis. Commentationes Mathematicae Universitatis Carolinae, 8, 291–305.Google Scholar
  31. Kirby, L., & Paris, J. (1982). Accessible independence results for Peano arithmetic. Bulletin of the London Mathematical Society, 14(4), 285.CrossRefGoogle Scholar
  32. Koellner, P. (2010). On the question of absolute undecidability. In K. Gödel, S. Feferman, C. Parsons & S. G. Simpson (eds.), Philosophia mathematica. Association for symbolic logic (pp. 153–188).Google Scholar
  33. Lavine, S. (Unpublished). Skolem was wrong. Google Scholar
  34. Leeds, S. (1978). Theories of reference and truth. Erkenntnis, 13(1), 111–129.CrossRefGoogle Scholar
  35. Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy, 36, 112–127.CrossRefGoogle Scholar
  36. Maddy, P. (1997). Naturalism in mathematics. Oxford: Oxford University Press.Google Scholar
  37. Maddy, P. (2007). Second philosophy: A naturalistic method. Oxford: Oxford University Press.CrossRefGoogle Scholar
  38. Malament, D. (1982). Science without numbers by Hartry Field. Journal of Philosophy, 79(9), 523–534.Google Scholar
  39. McGee, V. (1991). We turing machines aren’t expected-utility maximizers (even Ideally). Philosophical Studies, 64(1), 115–123.CrossRefGoogle Scholar
  40. McGee, V. (1997). How we learn mathematical language. Philosophical Review, 106, 35–68.CrossRefGoogle Scholar
  41. Odifreddi, P. (1989). Classical recursion theory: The theory of functions and sets of natural numbers. Amsterdam: Elsevier.Google Scholar
  42. Paris, J., & Harrington, L. (1977). A mathematical incompleteness in Peano arithmetic. In J. Barwise (Ed.), Handbook of mathematical logic (pp. 1133–1142). Amsterdam: Elsevier.CrossRefGoogle Scholar
  43. Parsons, C. (2001). Communication and the uniqueness of the natural numbers. The Proceedings of the First Seminar of the Philosophy of Mathematics in Iran, Shahid University. Google Scholar
  44. Penrose, R. (1989). The emperor’s new mind. New York: Oxford University Press.Google Scholar
  45. Penrose, R. (1994). Shadows of the mind. Oxford: Oxford University Press.Google Scholar
  46. Putnam, H. (1967a). The thesis that mathematics is logic. In R. Schoenman (Ed.), Bertrand russell: Philosopher of the century (pp. 273–303). London: Allen and Unwin.Google Scholar
  47. Putnam, H. (1967b). Mathematics without foundations. Journal of Philosophy, 64(1), 5–22.CrossRefGoogle Scholar
  48. Putnam, H. (1980). Models and reality. Journal of Symbolic Logic, 45(3), 464–482.CrossRefGoogle Scholar
  49. Quine, W. V. O. (1951). Two dogmas of empiricism. Philosophical Review, 60(1), 20–43.CrossRefGoogle Scholar
  50. Rosser, J. B. (1936). Extensions of some theorems of Gödel and Church. Journal of Symbolic Logic, 1, 230–235.Google Scholar
  51. Schechter, J. (2010). The reliability challenge and the epistemology of logic. Philosophical Perspectives, 24, 437–464.CrossRefGoogle Scholar
  52. Shapiro, S. (1991). Foundations without foundationalism: A case for second-order logic. Oxford: Oxford University Press.Google Scholar
  53. Shapiro, S. (1998). Incompleteness, mechanism, and optimism. Bulletin of Symbolic Logic, 4(3), 273–302.CrossRefGoogle Scholar
  54. Shapiro, S. (2003). Mechanism, truth, and Penrose’s new argument. Journal of Philosophical Logic, 32(1), 19–42.CrossRefGoogle Scholar
  55. Solovay, R. M., & Tennenbaum, S. (1971). Iterated Cohen extensions and Souslin’s problem. Annals of Mathematics, 94(2), 201–245.CrossRefGoogle Scholar
  56. Suslin, M. (1920). Probléme 3. Fundamenta Mathematicae, 1, 223.Google Scholar
  57. Tennenbaum, S. (1968). Souslin’s problem. U.S.A. Proceedings of the National Academy of Sciences, 59, 60–63.CrossRefGoogle Scholar
  58. Warren, J. (2015). Conventionalism, consistency, and consistency sentences. Synthese, 192(5), 1351–1371.CrossRefGoogle Scholar
  59. Warren, J. (2016). Epistemology versus non-causal realism. Synthese. doi:10.1007/s11229-015-1010-z
  60. Warren, J. & Waxman, D. (Unpublished). Reliability, explanation, and the failure of mathematical realism.Google Scholar
  61. Weir, A. (2010). Truth through proof: A formalist foundation for mathematics. Oxford: Clarendon Press.CrossRefGoogle Scholar
  62. Weston, T. (1976). Kreisel, the continuum hypothesis and second order set theory. Journal of Philosophical Logic, 5(2), 281–298.CrossRefGoogle Scholar
  63. Williamson, T. (1994). Vagueness. London and New York: Routledge.Google Scholar
  64. Woods, J. (2016). Mathematics, morality, and self-effacement. Noûs. Google Scholar
  65. Wright, C. (1983). Frege’s conception of numbers as objects. Aberdeen: Aberdeen University Press.Google Scholar
  66. Zermelo, E. (1930). Über stufen der quantifikation und die logik des unendlichen. Jahresbericht der Deutschen Mathematiker-Vereinigung (Angelegenheiten), 31, 85–88.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.FloridaUnited States
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations