Advertisement

Synthese

, Volume 195, Issue 3, pp 1181–1210 | Cite as

The qualitative paradox of non-conglomerability

  • Nicholas DiBellaEmail author
Article

Abstract

A probability function is non-conglomerable just in case there is some proposition E and partition \(\pi \) of the space of possible outcomes such that the probability of E conditional on any member of \(\pi \) is bounded by two values yet the unconditional probability of E is not bounded by those values. The paradox of non-conglomerability is the counterintuitive—and controversial—claim that a rational agent’s subjective probability function can be non-conglomerable. In this paper, I present a qualitative analogue of the paradox. I show that, under antecedently plausible assumptions, an analogue of the paradox arises for rational comparative confidence. As I show, the qualitative paradox raises its own distinctive set of philosophical issues.

Keywords

Probability Paradoxes Non-conglomerability Comparative confidence Qualitative probability Fair infinite lotteries Monotone continuity 

Notes

Acknowledgments

Thanks to Francesca Zaffora Blando, J. T. Chipman, Alan Hájek, Thomas Icard, Hanti Lin, audiences at the 2016 ANU Probability Workshop and the 2016 University of Western Ontario LMP Graduate Student Conference, anonymous referees, and especially Rachael Briggs and Kenny Easwaran for valuable discussions and comments.

References

  1. Arntzenius, F., Elga, A., & Hawthorne, J. (2004). Bayesianism, infinite decisions, and binding. Mind, 113(450), 251–283.CrossRefGoogle Scholar
  2. Bartha, P. (2004). Countable additivity and the de Finetti lottery. British Journal for the Philosophy of Science, 55, 301–321.CrossRefGoogle Scholar
  3. Cantelli, F. P. (1935). Sulla estensione del principio delle probabilità totali ad una successione illimitata di eventi incompatibili. Giornale dell Istituto Italiano degli Attuari, 6, 415–427.Google Scholar
  4. Chateauneuf, A., & Jaffray, J.-Y. (1984). Archimedean qualitative probabilities. Journal of Mathematical Psychology, 28, 191–204.CrossRefGoogle Scholar
  5. Chuaqui, R., & Malitz, J. (1983). Preorderings compatible with probability measures. Transactions of the American Mathematical Society, 279, 811–824.CrossRefGoogle Scholar
  6. de Finetti, B. (1930). Sulla proprietà conglomerativa delle probabilità subordinate. Rendiconti R. Instituto Lombardo di Scienze e Lettere, 43, 339–343.Google Scholar
  7. de Finetti, B. (1937). La prévision: Ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré, 17, 1–68.Google Scholar
  8. de Finetti, B. (1972). Probability, induction and statistics. New York: Wiley.Google Scholar
  9. de Finetti, B. (1974). Theory of probability. New York: Wiley.Google Scholar
  10. Dubins, L. E. (1975). Finitely additive conditional probabilities, conglomerability and disintegrations. Annals of Probability, 3, 89–99.CrossRefGoogle Scholar
  11. Easwaran, K. (2008). The foundations of conditional probability. PhD Dissertation, University of California, Berkeley.Google Scholar
  12. Easwaran, K. (2013a). Expected accuracy supports conditionalization and conglomerability and reflection. Philosophy of Science, 80(1), 119–142.CrossRefGoogle Scholar
  13. Easwaran, K. (2013b). Why countable additivity? Thought, 1(4), 53–61.Google Scholar
  14. Easwaran, K. (2014). Regularity and hyperreal credences. Philosophical Review, 123, 1–41.CrossRefGoogle Scholar
  15. Eriksson, L. & Hájek, A. (2007). What are degrees of belief? In B. Fitelson (Ed.), Studia Logica, 86, 185–215. (special issue on formal epistemology).Google Scholar
  16. Fine, T. (1973). Theories of probability. New York: Academic Press.Google Scholar
  17. Fishburn, P. (1986). The axioms of subjective probability. Statistical Science, 1(3), 335–358.CrossRefGoogle Scholar
  18. Fitelson, B., & Hájek, A. (2014). Declarations of independence. Synthese. doi: 10.1007/s11229-014-0559-2.
  19. Fitelson, B. & McCarthy, D. (2014). Toward an epistemic foundation for comparative confidence. Manuscript.Google Scholar
  20. Foley, R. (2009). Beliefs, degrees of belief, and the Lockean thesis. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of belief (pp. 37–47). Dordrecht: Springer.CrossRefGoogle Scholar
  21. Hawthorne, J. (2016). A logic of comparative support: qualitative conditional probability relations representable by Popper functions. In A. Hájek & C. Hitchcock (Eds.), The Oxford handbook of probability and philosophy. Oxford: Oxford University Press.Google Scholar
  22. Hill, B. M. (1980). On some statistical paradoxes and non-conglomerability. Trabajos de estadistica y de investigación operativa, 31(1), 39–66.CrossRefGoogle Scholar
  23. Hill, B. M., & Lane, D. (1986). Conglomerability and countable additivity. In P. K. Goel & A. Zellner (Eds.), Bayesian inference and decision techniques: Essays in honor of Bruno de Finetti (pp. 45–57). Amsterdam: Elsevier.Google Scholar
  24. Howson, C. (2008). De Finetti, countable additivity, consistency and coherence. British Journal for the Philosophy of Science, 59, 1–23.CrossRefGoogle Scholar
  25. Icard, T. (2016). Pragmatic considerations on comparative probability. Philosophy of Science, 83(3), 348–370.CrossRefGoogle Scholar
  26. Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Joyce, J. (1998). A nonpragmatic vindication of probabilism. Philosophy of Science, 65(4), 575–603.CrossRefGoogle Scholar
  28. Joyce, J. (2009). Accuracy and coherence: Prospects for an alethic epistemology of partial belief. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of belief (pp. 263–297). Dordrecht: Springer.CrossRefGoogle Scholar
  29. Kadane, J. B., Schervish, M. J., & Seidenfeld, T. (1986). Statistical implications of finitely additive probability. In P. K. Goel & A. Zellner (Eds.), Bayesian inference and decision techniques: Essays in honor of Bruno de Finetti (pp. 59–76). Amsterdam: Elsevier.Google Scholar
  30. Keynes, J. M. (1921). A treatise on probability. London: Macmillan.Google Scholar
  31. Kolmogorov, A. N. (1950). Foundations of the theory of probability. New York: Chelsea.Google Scholar
  32. Koopman, B. O. (1940a). The axioms and algebra of intuitive probability. Annals of Mathematics, 41, 269–292.CrossRefGoogle Scholar
  33. Koopman, B. O. (1940b). The bases of probability. Bulletin of the American Mathematical Society, 46, 763–774.CrossRefGoogle Scholar
  34. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement (Vol. 1). New York: Academic Press.Google Scholar
  35. Luce, D. (1968). On the quantitative representation of qualitative conditional probability. The Annals of Mathematical Statistics, 39, 481–491.CrossRefGoogle Scholar
  36. Pruss, A. (2012). Infinite lotteries, perfectly thin darts and infinitesimals. Thought, 1, 81–89.Google Scholar
  37. Pruss, A. (2014). Infinitesimals are too small for countably infinite fair lotteries. Synthese, 191, 1051–1057.CrossRefGoogle Scholar
  38. Savage, L. J. (1954). The foundations of statistics. New York: Wiley.Google Scholar
  39. Schwarze, M. G. (1989). Preorders compatible with probability measures defined on a Boolean algebra. Proceedings of the American Mathematical Society, 105(2), 436–442.CrossRefGoogle Scholar
  40. Scott, D. (1964). Measurement structures and linear inequalities. Journal of Mathematical Psychology, 1, 233–247.CrossRefGoogle Scholar
  41. Seidenfeld, T., Schervish, M. J., & Kadane, J. B. (2013). Two theories of conditional probability and non-conglomerability. Eighth International Symposium on Imprecise Probability: Theory and Application, July 2–5, Compiègne, France.Google Scholar
  42. Stefánsson, H. O. (2016). What is ‘real’ in probabilism? Australasian Journal of Philosophy, 1–15.Google Scholar
  43. Suppes, P., & Zanotti, M. (1982). Necessary and sufficient qualitative axioms for conditional probability. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 60, 163–169.CrossRefGoogle Scholar
  44. Villegas, C. (1964). On qualitative probability \(\sigma \)-algebras. Annals of Mathematical Statistics, 35, 1787–1796.CrossRefGoogle Scholar
  45. Wenmackers, S., & Horsten, L. (2013). Fair infinite lotteries. Synthese, 190(1), 37–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhilosophyStanford UniversityStanfordUSA

Personalised recommendations