, Volume 193, Issue 12, pp 3951–3985 | Cite as

Bayesian reverse-engineering considered as a research strategy for cognitive science

  • Carlos ZednikEmail author
  • Frank Jäkel
Neuroscience and Its Philosophy


Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and are often deployed unsystematically, Bayesian reverse-engineering avoids several important worries that have been raised about the explanatory credentials of Bayesian cognitive science: the worry that the lower levels of analysis are being ignored altogether; the challenge that the mathematical models being developed are unfalsifiable; and the charge that the terms ‘optimal’ and ‘rational’ have lost their customary normative force. But while Bayesian reverse-engineering is therefore a viable and productive research strategy, it is also no fool-proof recipe for explanatory success.


Probabilistic modeling Rational analysis Ideal observers Reverse-engineering Levels of analysis Scientific explanation 



The authors would like to thank Cameron Buckner, Tomer Ullman, and Felix Wichmann for comments on an earlier draft of this paper. A preliminary version of this work was presented at the Annual Conference of the Cognitive Science Society (Zednik and Jäkel 2014), as well as at workshops and colloquia in Berlin, Cortina d’Ampezzo, Leiden, Osnabrück, Rauischholzhausen, and Tilburg.


  1. Acerbi, L., Vijayakumar, S., & Wolpert, D. M. (2014). On the origins of suboptimality in human probabilistic inference. PLoS Computational Biology, 20(6), 1–23.Google Scholar
  2. Anderson, B. L. (2015). Can computational goals inform theories of vision? Topics in Cognitive Science, 7, 274–286.CrossRefGoogle Scholar
  3. Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85, 249–277.CrossRefGoogle Scholar
  4. Anderson, J. R. (1991a). Is human cognition adaptive? Behavioral and Brain Sciences, 14, 471–517.CrossRefGoogle Scholar
  5. Anderson, J. R. (1991b). The adaptive nature of human categorization. Psychological Review, 98(3), 409–429.CrossRefGoogle Scholar
  6. Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. Machine Learning, 50, 5–43.CrossRefGoogle Scholar
  7. Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability density estimation. Journal of Mathematical Psychology, 39, 216–233.CrossRefGoogle Scholar
  8. Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory and Cognition, 14(1), 33–53.Google Scholar
  9. Battaglia, P. W., Hamrick, J., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences USA, 110(45), 18327–18332.CrossRefGoogle Scholar
  10. Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. PhD thesis, The Gatsby Computational Neuroscience Unit, University College London.Google Scholar
  11. Berkes, P., Orbán, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331, 83–87.CrossRefGoogle Scholar
  12. Berniker, M., & Körding, K. P. (2011). Bayesian approaches to sensory integration for motor control. WIREs Cognitive Science, 2, 419–428.CrossRefGoogle Scholar
  13. Bowers, J. S., & Davis, C. J. (2012a). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138(3), 389–414.CrossRefGoogle Scholar
  14. Bowers, J. S., & Davis, C. J. (2012). Is that what Bayesians believe? Reply to Griffiths, Chater, Norris, and Pouget (2012). Psychological Bulletin, 138(3), 423–426.CrossRefGoogle Scholar
  15. Brunswik, E. (1943). Organismic achievement and environmental probability. Psychological Review, 50, 255–272.CrossRefGoogle Scholar
  16. Chater, N., Goodman, N., Griffiths, T. L., Kemp, C., Oaksford, M., & Tenenbaum, J. B. (2011). The imaginary fundamentalists: The unshocking truth about Bayesian cognitive science. Behavioral and Brain Sciences, 34(4), 194–196.CrossRefGoogle Scholar
  17. Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences, 10, 287–291.CrossRefGoogle Scholar
  18. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.CrossRefGoogle Scholar
  19. Colombo, M., & Hartmann, S. (2015). Bayesian cognitive science, unification, and explanation.The British Journal for the Philosophy of Science [Epub ahead of print]. doi: 10.1093/bjps/axv036.
  20. Colombo, M., & Seriès, P. (2012). Bayes in the brain—On Bayesian modelling in neuroscience. The British Journal for the Philosophy of Science, 63(3), 697–723.CrossRefGoogle Scholar
  21. Cooper, R. P., & Peebles, D. (2015). Beyond single-level accounts: The role of cognitive architectures in cognitive scientific explanations. Topics in Cognitive Science, 7, 243–258.CrossRefGoogle Scholar
  22. Cummins, R. (1983). The nature of psychological explanation. Cambridge: MIT Press.Google Scholar
  23. Danks, D. (2008). Rational analyses, instrumentalism, and implementations. In N. Chater & M. Oaksford (Eds.), The probabilistic mind: Prospects for rational models of cognition (pp. 59–75). Oxford: Oxford University Press.CrossRefGoogle Scholar
  24. Danks, D., & Eberhardt, F. (2009). Explaining norms and norms explained. Behavioral and Brain Sciences, 32(1), 86–87.CrossRefGoogle Scholar
  25. Davies, N. B., Krebs, J. R., & West, S. A. (2012). An introduction to behavioural ecology. Chichester, UK: Wiley-Blackwell.Google Scholar
  26. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge, MA: MIT Press.Google Scholar
  27. Dennett, D. (1987). The intentional stance. Cambridge, MA: MIT Press.Google Scholar
  28. Dennett, D. (1994). Cognitive science as reverse engineering: Several meanings of ‘top-down’ and ‘bottom-up’. In D. Prawitz, B. Skyrms, & D. Westerstahl (Eds.), Logic, methodology & philosophy of science IX (pp. 679–689). Amsterdam: Elsevier Science.Google Scholar
  29. Dorfman, D. D., & Biderman, M. (1971). A learning model for a continuum of sensory states. Journal of Mathematical Psychology, 8, 264–284.CrossRefGoogle Scholar
  30. Efron, B. (2013). A 250-year argument: Belief, behavior, and the bootstrap. Bulletin of the American Mathematical Society, 50(1), 129–146.CrossRefGoogle Scholar
  31. Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. The Quarterly Journal of Economics, 75(4), 643–669.CrossRefGoogle Scholar
  32. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.CrossRefGoogle Scholar
  33. Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal perception and learning: From behavior to neural representations. Trends in Cognitive Sciences, 14(3), 119–130.CrossRefGoogle Scholar
  34. Frank, M. C. (2013). Throwing out the Bayesian baby with the optimal bathwater: Response to Endress (2013). Cognition, 128, 417–423.CrossRefGoogle Scholar
  35. Fried, L. S., & Holyoak, K. J. (1984). Induction of category distributions: A framework for classification learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 234–257.Google Scholar
  36. Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), 1–24.CrossRefGoogle Scholar
  37. Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discrimination. Psychological Review, 96(2), 267–314.CrossRefGoogle Scholar
  38. Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349, 273–278.CrossRefGoogle Scholar
  39. Gigerenzer, G. (1991). From tools to theories: A heuristic of discovery in cognitive psychology. Psychological Review, 98(2), 254–267.CrossRefGoogle Scholar
  40. Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574.CrossRefGoogle Scholar
  41. Goodman, N., Frank, M. C., Griffiths, T. L., Tenenbaum, J. B., Battaglia, P., & Hamrick, J. (2015). Relevant and robust. A response to Marcus and Davis (2013). Psychological Science, 26(4), 539–541.CrossRefGoogle Scholar
  42. Green, D. M., & Swets, J. A. (1988). Signal detection and psychophysics (reprint ed.). Los Altos, CA: Peninsula Publishing.Google Scholar
  43. Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8), 357–364.CrossRefGoogle Scholar
  44. Griffiths, T. L., Chater, N., Norris, D., & Pouget, A. (2012a). How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012). Psychological Bulletin, 138(3), 415–422.Google Scholar
  45. Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), The Cambridge handbook of computational cognitive modeling. Cambridge, UK: Cambridge University Press.Google Scholar
  46. Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7, 217–229.CrossRefGoogle Scholar
  47. Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday cognition. Psychological Science, 17(9), 767–773.CrossRefGoogle Scholar
  48. Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012b). Bridging levels of analysis for probabilistic models of cognition. Psychological Science, 21, 263–268.Google Scholar
  49. Hacking, I. (1975). The emergence of probability. Cambridge, UK: Cambridge University Press.Google Scholar
  50. Hahn, U. (2014). The Bayesian boom: Good thing or bad? Frontiers in Psychology, 5, 1–12.CrossRefGoogle Scholar
  51. Houlsby, N. M. T., Huszár, F., Ghassemi, M. M., Orbán, G., Wolpert, D. M., & Lengyel, M. (2013). Cognitive tomography reveals complex, task-independent mental representations. Current Biology, 23, 2169–2175.CrossRefGoogle Scholar
  52. Jäkel, F., Wichmann, F. A., & Schölkopf, B. (2009). Does cognitive science need kernels? Trends in Cognitive Sciences, 13, 381–388.CrossRefGoogle Scholar
  53. Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34, 169–231.CrossRefGoogle Scholar
  54. Kac, M. (1969). Some mathematical models in science. Science, 166(3906), 695–699.CrossRefGoogle Scholar
  55. Kass, R. E. (2011). Statistical inference: The big picture. Statistical Science, 26(1), 1–9.CrossRefGoogle Scholar
  56. Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.CrossRefGoogle Scholar
  57. Kersten, D., & Schrater, P. R. (2002). Pattern inference theory: A probabilistic approach to vision. In R. Mausfeld & D. Heyer (Eds.), Perception and the physical world. Chichester: Wiley.Google Scholar
  58. Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Cognitive Sciences, 27(12), 712–719.Google Scholar
  59. Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.CrossRefGoogle Scholar
  60. Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.CrossRefGoogle Scholar
  61. Kruschke, J. K. (2006). Locally Bayesian learning with applications to retrospective revaluation and highlighting. Psychological Review, 113, 677–699.CrossRefGoogle Scholar
  62. Kwisthout, J., & van Rooij, I. (2013). Bridging the gap between theory and practice of approximate Bayesian inference. Cognitive Systems Research, 24, 2–8.CrossRefGoogle Scholar
  63. Love, B. C. (2015). The algorithmic level is the bridge between computation and brain. Topics in Cognitive Science, 7, 240–242.CrossRefGoogle Scholar
  64. Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438.CrossRefGoogle Scholar
  65. Maloney, L. T., & Mamassian, P. (2009). Bayesian decision theory as a model of human visual perception: Testing Bayesian transfer. Visual Neuroscience, 26, 147–155.CrossRefGoogle Scholar
  66. Marcus, G. F., & Davis, E. (2013). How robust are probabilistic models of higher-level cognition? Psychological Science, 24(12), 2351–2360.CrossRefGoogle Scholar
  67. Marcus, G. F., & Davis, E. (2015). Still searching for principles: A response to Goodman et al. (2015). Psychological Science, 26(4), 542–544.CrossRefGoogle Scholar
  68. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W. H. Freeman.Google Scholar
  69. McClamrock, R. (1991). Marr’s three levels: A re-evaluation. Minds and Machines, 1, 185–196.CrossRefGoogle Scholar
  70. McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., & Seidenberg, M. S. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14(8), 348–356.CrossRefGoogle Scholar
  71. Milkowski, M. (2013a). Explaining the computational mind. Cambridge, MA: MIT Press.Google Scholar
  72. Milkowski, M. (2013b). Reverse engineering in cognitive science. In M. Milkowski & K. Talmont-Kaminski (Eds.), Regarding the mind, naturally: Naturalist approaches to the sciences of the mental (pp. 12–29). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  73. Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology, 115, 39–57.CrossRefGoogle Scholar
  74. Oaksford, M., & Chater, N. (2001). The probabilistic approach to human reasoning. Trends in Cognitive Sciences, 5(8), 349–357.CrossRefGoogle Scholar
  75. Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford: Oxford University Press.CrossRefGoogle Scholar
  76. Ostwald, D., Spitzer, B., Guggenmos, M., Schmidt, T. T., Kiebel, S. J., & Blankenburg, F. (2012). Evidence for neural encoding of Bayesian surprise in human somatosensation. NeuroImage, 62(1), 177–188.CrossRefGoogle Scholar
  77. Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: Probing the physiology of perception. Annual Review of Neuroscience, 21, 227–277.CrossRefGoogle Scholar
  78. Peterson, C. R., & Beach, L. R. (1967). Man as an intuitive statistician. Psychological Bulletin, 68(1), 29–46.CrossRefGoogle Scholar
  79. Pouget, A., Beck, J. M., Ma, W. J., & Latham, P. E. (2013). Probabilistic brains: Knowns and unknowns. Nature Neuroscience, 16(9), 1170–1178.CrossRefGoogle Scholar
  80. Rosas, P., Wagemans, J., Ernst, M. O., & Wichmann, F. A. (2005). Texture and haptic cues in slant discrimination: Reliability-based cue weighting without statistically optimal cue combination. Journal of the Optical Society of America A, 22(5), 801–809.CrossRefGoogle Scholar
  81. Rosas, P., Wichmann, F. A., & Wagemans, J. (2007). Texture and object motion in slant discrimination: Failure of reliability-based weighting of cues may be evidence for strong fusion. Journal of Vision, 7(6), 1–12.CrossRefGoogle Scholar
  82. Rothkopf, C. A., & Ballard, D. H. (2013). Modular inverse reinforcement learning for visuomotor behavior. Biological Cybernetics, 107(4), 477–490.CrossRefGoogle Scholar
  83. Salmon, W. (1989). Four decades of scientific explanation. Pittsburgh: Pittsburgh University Press.Google Scholar
  84. Sanborn, A., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117(4), 1144–1167.CrossRefGoogle Scholar
  85. Sanborn, A., & Silva, R. (2013). Constraining bridges between levels of analysis: A computational justification for locally Bayesian learning. Journal of Mathematical Psychology, 57, 94–106.CrossRefGoogle Scholar
  86. Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. M. (2010). Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology, 60, 63–106.CrossRefGoogle Scholar
  87. Savage, L. J. (1972). The foundations of statistics. Mineola, NY: Dover (original work published 1954).Google Scholar
  88. Shagrir, O. (2010). Marr on computational-level theories. Philosophy of Science, 77(4), 477–500.CrossRefGoogle Scholar
  89. Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as mechanisms for performing Bayesian inference. Psychonomic Bulletin & Review, 17(4), 443–464.CrossRefGoogle Scholar
  90. Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  91. Simon, H. A., Langley, P. W., & Bradshaw, G. L. (1981). Scientific discovery as problem solving. Synthese, 47(1), 1–27.CrossRefGoogle Scholar
  92. Simoncelli, E. P. (2003). Vision and the statistics of the visual environment. Current Opinion in Neurobiology, 13, 144–149.CrossRefGoogle Scholar
  93. Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience, 9(4), 578–585.CrossRefGoogle Scholar
  94. Stüttgen, M. C., Kasties, N., Lengersdorf, D., Starosta, S., Güntürkün, O., & Jäkel, F. (2013). Suboptimal criterion setting in a perceptual choice task with asymmetric reinforcement. Behavioral Processes, 96, 59–70.CrossRefGoogle Scholar
  95. Stüttgen, M. C., Schwarz, C., & Jäkel, F. (2011). Mapping spikes to sensations. Frontiers in Neuroscience, 5(125), 1–17.Google Scholar
  96. Swets, J., Tanner, W. P., & Birdsall, T. G. (1961). Decision processes in perception. Psychological Review, 68, 301–340.CrossRefGoogle Scholar
  97. Swets, J. A. (2010). Tulips to thresholds. Los Altos Hills, CA: Peninsula Publishing.Google Scholar
  98. Tanner, W. P. (1961). Physiological implications of psychophysical data. Annals of the New York Academy of Sciences, 89, 752–765.CrossRefGoogle Scholar
  99. Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.CrossRefGoogle Scholar
  100. Thomas, E. A. C. (1973). On a class of additive learning models: Error-correcting and probability matching. Journal of Mathematical Psychology, 10, 241–264.CrossRefGoogle Scholar
  101. Thomson, R., & Lebiere, C. (2013). Constraining Bayesian inference with cognitive architectures: An updated associative learning mechanism in ACT-R. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual meeting of the Cognitive Science Society (pp. 318–362). Austin, TX: Cognitive Science Society.Google Scholar
  102. Tversky, A., & Kahneman, D. (1974). Judgments under uncertainty. Heuristics and biases. Science, 185, 1124–1131.CrossRefGoogle Scholar
  103. Ullman, T. D., Goodman, N. D., & Tenenbaum, J. B. (2012). Theory learning as stochastic search in the language of thought. Cognitive Development, 27, 455–480.CrossRefGoogle Scholar
  104. Vilares, I., Howard, J. D., Fernandes, H. L., Gottfried, J. A., & Körding, K. P. (2012). Differential representations of prior and likelihood uncertainty in the human brain. Current Biology, 22, 1–8.CrossRefGoogle Scholar
  105. Vilares, I., & Körding, K. P. (2011). Bayesian models: The structure of the world, uncertainty, behavior, and the brain. Annals of the New York Academy of Sciences, 1224, 22–39.CrossRefGoogle Scholar
  106. Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38, 599–637.CrossRefGoogle Scholar
  107. Wimsatt, W. C. (1985). Heuristics and the study of human behavior. In D. W. Fiske & R. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 293–314). Chicago: University of Chicago Press.Google Scholar
  108. Yang, Z., & Purves, D. (2003). A statistical explanation of visual space. Nature Neuroscience, 6(6), 632–640.CrossRefGoogle Scholar
  109. Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 238–263.CrossRefGoogle Scholar
  110. Zednik, C. (2016). Cognitive mechanisms. In S. Glennan & P. Illari (Eds.), The Routledge handbook of mechanisms and mechanical philosophy. London: Routledge.Google Scholar
  111. Zednik, C., & Jäkel, F. (2014). How does Bayesian reverse-engineering work? In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th annual conference of the Cognitive Science Society (pp. 666–671). Austin, TX: Cognitive Science Society.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institut III - PhilosophieOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Institut für KognitionswissenschaftUniversität OsnabrückOsnabrückGermany

Personalised recommendations