Synthese

, Volume 194, Issue 9, pp 3583–3617 | Cite as

Univalent foundations as structuralist foundations

Article
  • 189 Downloads

Abstract

The Univalent Foundations of Mathematics (UF) provide not only an entirely non-Cantorian conception of the basic objects of mathematics (“homotopy types” instead of “sets”) but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal system must satisfy if it is to be regarded as a “structuralist foundation.” I will then explain why both set-theoretic foundations like ZFC and category-theoretic foundations like ETCS satisfy this criterion only to a very limited extent. Then I will argue that UF is better-able to live up to the proposed criterion for a structuralist foundation than any currently available foundational proposal. First, by showing that most criteria of identity in the practice of mathematics can be formalized in terms of the preferred criterion of identity between the basic objects of UF (“homotopy equivalence”). Second, by countering several objections that have been raised against UF’s capacity to serve as a foundation for the whole of mathematics.

Keywords

Structuralism Foundations of mathematics Univalent foundations 

References

  1. Ahrens, B., Kapulkin, K., & Shulman, M. (2015). Univalent categories and the rezk completion. In: Extended abstracts fall 2013 (pp. 75–76). Heidelberg: Springer.Google Scholar
  2. Awodey, S. (2004). An answer to Hellman’s question: ‘Does category theory provide a framework for mathematical structuralism?’. Philosophia Mathematica, 12(1), 54–64.CrossRefGoogle Scholar
  3. Awodey, S. (2014). Structuralism, invariance and univalence. Philosophia Mathematica, 22(1), 1–11.CrossRefGoogle Scholar
  4. Awodey, S., & Warren, M. A. (2009). Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society, 146(45), 45–55.CrossRefGoogle Scholar
  5. Benacerraf, P. (1965). What numbers could not be. The Philosophical Review, 74(1), 47–73.CrossRefGoogle Scholar
  6. Bezem, M., Coquand, T., & Huber, S. (2014). A model of type theory in cubical sets. In: 19th International Conference on Types for Proofs and Programs (TYPES 2013) (Vol. 26, pp. 107–128).Google Scholar
  7. Blanc, G. (1978). Equivalence naturelle et formules logiques en théorie des catégories. Archive for Mathematical Logic, 19(1), 131–137.CrossRefGoogle Scholar
  8. Burgess, J. (2013). Putting structuralism in its place. Manuscript.Google Scholar
  9. Burgess, J. (2014). Rigor and structure. Oxford: Oxford University Press.Google Scholar
  10. Carson, E. (1999). Kant on the method of mathematics. Journal of the History of Philosophy, 37(4), 629–652.CrossRefGoogle Scholar
  11. Cohen, C., Coquand, T., Huber, S., & Mörtberg, A. (2015). Cubical type theory: A constructive interpretation of the univalence axiom. https://www.math.ias.edu/~amortberg/papers/cubicaltt.pdf.
  12. Freyd, P. (1976). Properties invariant within equivalence types of categories. Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg) (pp. 55–61).Google Scholar
  13. Friedman, M. (1985). Kant’s theory of geometry. The Philosophical Review, 94(4), 455–506.CrossRefGoogle Scholar
  14. Friedman, M. (2012). Kant on geometry and spatial intuition. Synthese, 186, 231–255.CrossRefGoogle Scholar
  15. Grothendieck, A. (1997). Esquisse d’un programme. London Mathematical Society Lecture Note Series (pp. 5–48). http://www.landsburg.com/grothendieck/EsquisseEng.pdf.
  16. Hellman, G. (2001). Three varieties of mathematical structuralism. Philosophia Mathematica, 9(2), 184–211.CrossRefGoogle Scholar
  17. Hintikka, J. (1967). Kant on the mathematical method. The Monist, 51(3), 352–375.CrossRefGoogle Scholar
  18. Hofmann, M., & Streicher, T. (1998). The groupoid interpretation of type theory, 36, 83–111.Google Scholar
  19. Hogan, D. (2015). Kant and the character of mathematical inference. In C. Posy (Ed.), Kant’s philosophy of mathematics. Berlin: Springer.Google Scholar
  20. HoTT Book. (2013). Homotopy type theory: Univalent foundations of mathematics. http://homotopytypetheory.org/book.
  21. Kapranov, M., & Voevodsky, V. (1991). \(\infty \)-groupoids and homotopy types. Cahiers Topologie Géom. Différentielle Catég, 32(1), 29–46. International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990).Google Scholar
  22. Kapulkin, K., Lumsdaine, P., Voevodsky, V. (2014). The simplicial model of univalent foundations. arXiv:1211.2851v2.
  23. Lawvere, W. (2005). An elementary theory of the category of sets. Reprints in Theory and Applications of Categories, 12, 1–35.Google Scholar
  24. Leinster, T. (2014). Rethinking set theory. American Mathematical Monthly, 121(5), 403–415.CrossRefGoogle Scholar
  25. Lurie, J. (2009). Higher topos theory (Vol. 170). Princeton, NJ: Princeton University Press.Google Scholar
  26. Makkai, M. (1995). First order logic with dependent sorts with applications to category theory. http://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf.
  27. Makkai, M. (1998). Towards a categorical foundation of mathematics. Lecture Notes in Logic, 11, 153–190.CrossRefGoogle Scholar
  28. Makkai, M. (2013). The theory of abstract sets based on first-order logic with dependent types. http://www.math.mcgill.ca/makkai/Various/MateFest2013.pdf.
  29. Marquis, J. P. (2008). From a geometrical point of view: A study of the history and philosophy of category theory (Vol. 14). Dordrecht: Springer Science & Business Media.Google Scholar
  30. Marquis, J. P. (2013). Mathematical forms and forms of mathematics: Leaving the shores of extensional mathematics. Synthese, 190(12), 2141–2164.CrossRefGoogle Scholar
  31. Marquis, J.P. (March 2013). Categorical foundations of mathematics: Or how to provide foundations for abstract mathematics. The Review of Symbolic Logic, 6(1), 51–75.Google Scholar
  32. Martin-Löf, P. (1984). Intuitionistic type theory. Napoli: Bibliopolis.Google Scholar
  33. McLarty, C. (1993). Numbers can be just what they have to. Nous, 27(4), 487–498.CrossRefGoogle Scholar
  34. McLarty, C. (2004). Exploring categorical structuralism. Philosophia Mathematica, 12(1), 37–53.CrossRefGoogle Scholar
  35. Mycielski, J. (1977). A lattice of interpretability types of theories. The Journal of Symbolic Logic, 42(2), 297–305.CrossRefGoogle Scholar
  36. Palmgren, E. (2012). Constructivist and structuralist foundations: Bishop’s and Lawvere’s theories of sets. Annals of Pure and Applied Logic, 163(10), 1384–1399.CrossRefGoogle Scholar
  37. Parsons, C. (1990). The structuralist view of mathematical objects. Synthese, 84, 303–346.CrossRefGoogle Scholar
  38. Parsons, C. (1992). Kant’s philosophy of arithmetic. In C. J. Posy (Ed.), KantÕs philosophy of mathematics (pp. 293–313). Dordrecht: Springer.Google Scholar
  39. Putnam, H. (1983). Mathematics without foundations. In H. Putnam & P. Benacerraf (Eds.), Philosophy of mathematics (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  40. Quine, W. V. O. (1969). Ontological relativity and other essays. New York: Columbia University Press.Google Scholar
  41. Resnik, M. (1981). Mathematics as a science of patterns: Ontology and reference. Nous, 15, 529–550.CrossRefGoogle Scholar
  42. Schreiber, U. (2013) Differential cohomology in a cohesive \(\infty \)-topos.Google Scholar
  43. Schreiber, U., & Shulman, M. (2012). Quantum gauge field theory in cohesive homotopy type theory.Google Scholar
  44. Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. Oxford: Oxford University Press.Google Scholar
  45. Shulman, M. (2014). Homotopy type theory should eat itself (but so far, it’s too big to swallow). http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself.
  46. Shulman, M. (2015). Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. arXiv preprint arXiv:1509.07584.
  47. Shulman, M. (2016). Homotopy type theory: A synthetic approach to higher equalities. In E. Landry (Ed.), Categories for the working philosopher. Oxford: Oxford University Press.Google Scholar
  48. Tsementzis, D. (2016a). Homotopy model theory I: syntax and semantics. arXiv preprint arXiv:1603.03092.
  49. Tsementzis, D. (2016b). What is a higher level set? (unpublished manuscript)Google Scholar
  50. Voevodsky, V. (2006). Foundations of mathematics and homotopy theory. https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/VV%20Slides.pdf.
  51. Voevodsky, V. (2010). Univalent foundations project. http://www.math.ias.edu/vladimir/files/univalent_foundations_project.pdf.
  52. Voevodsky, V. (2014). An experimental library of formalized mathematics based on univalent foundations. http://arxiv.org/pdf/1401.0053.pdf.
  53. Voevodsky, V. (2014). Univalent Foundations (lecture at the IAS). https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2014_IAS.pdf.
  54. Warren, M. A. (2008). Homotopy theoretic aspects of constructive type theory. Ph.D. thesis, Carnegie Mellon University.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhilosophyPrinceton UniversityPrincetonUSA

Personalised recommendations