, Volume 194, Issue 4, pp 1115–1145 | Cite as

A persistence enhancing propensity account of ecological function to explain ecosystem evolution

  • Antoine C. DussaultEmail author
  • Frédéric Bouchard
S.I. : Teleological Organisation


We argue that ecology in general and biodiversity and ecosystem function (BEF) research in particular need an understanding of functions which is both ahistorical and evolutionarily grounded. A natural candidate in this context is Bigelow and Pargetter’s (1987) evolutionary forward-looking account which, like the causal role account, assigns functions to parts of integrated systems regardless of their past history, but supplements this with an evolutionary dimension that relates functions to their bearers’ ability to thrive and perpetuate themselves. While Bigelow and Pargetter’s account focused on functional organization at the level of organisms, we argue that such an account can be extended to functional organization at the community and ecosystem levels in a way that broadens the scope of the reconciliation between ecosystem ecology and evolutionary biology envisioned by many BEF researchers (e.g. Holt 1995; Loreau 2010a). By linking an evolutionary forward-looking account of functions to the persistence-based understanding of evolution defended by Bouchard (2008, 2011) and others (e.g. Bourrat 2014; Doolittle 2014), and to the theoretical research on complex adaptive systems (Levin 1999, 2005; Norberg 2004), we argue that ecosystems, by forming more or less resilient assemblages, can evolve even while they do not reproduce and form lineages. We thus propose a Persistence Enhancing Propensity (PEP) account of role functions in ecology to account for this overlap of evolutionary and ecological processes.


Philosophy of ecology Ecological function Biodiversity and ecosystem function  Complex adaptive systems Ecosystem evolution Reticulate evolution 


  1. Achinstein, P. (1977). Function statements. Philosophy of Science, 44(3), 341–367.CrossRefGoogle Scholar
  2. Allen, T. F. H., & Hoekstra, T. W. (1992). Toward a unified ecology. New York: Columbia University Press.Google Scholar
  3. Allen, T. F. H., Mitman, G., & Hoekstra, T. W. (1993). Synthesis mid-century: J.T. Curtis and the community concept. In J. S. Fralish, R. P. McIntosh, & O. L. Loucks (Eds.), John T. Curtis: Fifty years of Wisconsin plant ecology (pp. 123–143). Madison: Wisconsin Academy of Sciences, Arts & Letters.Google Scholar
  4. Allen, T. F. H., Tainter, J. A., & Hoekstra, T. W. (2003). Supply-side sustainability. New York: Columbia University Press.Google Scholar
  5. Amarasekare, P., & Nisbet, R. M. (2001). Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. The American Naturalist, 158(6), 572–584. doi: 10.1086/323586.Google Scholar
  6. Amundson, R., & Lauder, G. V. (1994). Function without purpose. Biology and Philosophy, 9(4), 443–469.CrossRefGoogle Scholar
  7. Ariew, A., & Lewontin, R. C. (2004). The confusions of fitness. British Journal for the Philosophy of Science, 55(2), 347–363.CrossRefGoogle Scholar
  8. Bambach, R. K., & Bennington, J. B. (1996). Do communities evolve? A major question in evolutionary paleoecology. In D. Jablonski, D. H. Erwin, & J. H. Lipps (Eds.), Evolutionary paleobiology (pp. 123–160). Chicago, IL: University of Chicago Press.Google Scholar
  9. Bapteste, E., Bouchard, F., & Burian, R. M. (2012). Philosophy and evolution: Minding the gap between evolutionary patterns and tree-like patterns. Methods in Molecular Biology, 856, 81–110.CrossRefGoogle Scholar
  10. Bardon, A. (2007). Reliabilism, proper function, and serendipitous malfunction. Philosophical Investigations, 30(1), 45–64.CrossRefGoogle Scholar
  11. Barker, G. (2008). Biological levers and extended adaptationism. Biology and Philosophy, 23(1), 1–25.CrossRefGoogle Scholar
  12. Barker, G., & Odling-Smee, J. (2013). Integrating ecology and evolution: Niche Construction and ecological engineering. In G. Barker, E. Desjardins, & T. Pearce (Eds.), Entangled life: Organism and environment in the biological and social sciences (pp. 187–211). New York: Springer.Google Scholar
  13. Beisner, B. E., Haydon, D. T., & Cuddington, K. (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1(7), 376.CrossRefGoogle Scholar
  14. Bertrand, M. (2013). Proper environment and the SEP account of biological function. Synthese, 190(9), 1503–1517.CrossRefGoogle Scholar
  15. Bigelow, J., & Pargetter, R. (1987). Functions. Journal of Philosophy, 84(4), 181–196.CrossRefGoogle Scholar
  16. Biswas, S. R., & Mallik, A. U. (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91(1), 28–35.CrossRefGoogle Scholar
  17. Blandin, P. (2007). L’écosystème existe-t-il ? Le tout et la partie en écologie. In T. Martin (Ed.), Le tout & les parties dans les systèmes naturels: Écologie, biologie, médecine, astronomie, physique et chimie (pp. 21–46). Paris: Vuibert.Google Scholar
  18. Blandin, P., & Lamotte, M. (1989). L’organisation hiérarchique des systèmes écologiques. Società italiana di Ecologia Atti, 7, 35–48.Google Scholar
  19. Boorse, C. (1976). Wright on functions. Philosophical Review, 85(1), 70–86.CrossRefGoogle Scholar
  20. Boorse, C. (2002). A rebuttal on functions. In A. Ariew, R. Cummins, & M. Perlman (Eds.), Functions: New essays in the philosophy of psychology and biology (pp. 63–112). Oxford, NY: Oxford University Press.Google Scholar
  21. Bouchard, F. (2008). Causal processes, fitness, and the differential persistence of lineages. Philosophy of Science, 75(5), 560–570.CrossRefGoogle Scholar
  22. Bouchard, F. (2009). Understanding colonial traits using symbiosis research and ecosystem ecology. Biological Theory, 4(3), 240–246.CrossRefGoogle Scholar
  23. Bouchard, F. (2010). Symbiosis, lateral function transfer and the (many) saplings of life. Biology and Philosophy, 24(4), 623–641.CrossRefGoogle Scholar
  24. Bouchard, F. (2011). Darwinism without populations: A more inclusive understanding of the “Survival of the Fittest”. Studies in History and Philosophy of Science Part C, 42(1), 106–114.CrossRefGoogle Scholar
  25. Bouchard, F. (2013a). How Ecosystem evolution strengthens the case for functional pluralism. In P. Huneman (Ed.), Functions: Selection and mechanisms (pp. 83–95). Dordrecht: Springer.CrossRefGoogle Scholar
  26. Bouchard, F. (2013b). What Is a symbiotic superindividual and how do you measure its fitness? In P. Huneman & F. Bouchard (Eds.), From groups to individuals. Evolution and emerging individuality (p. 243). Cambridge: MIT Press.Google Scholar
  27. Bouchard, F. (2014). Ecosystem evolution is about variation and persistence, not populations and reproduction. Biological Theory, 9(4), 382–391.CrossRefGoogle Scholar
  28. Bouchard, F., & Rosenberg, A. (2004). Fitness, probability and the principles of natural selection. British Journal for the Philosophy of Science, 55(4), 693–712.CrossRefGoogle Scholar
  29. Bourrat, P. (2014). From survivors to replicators: Evolution by natural selection revisited. Biology and Philosophy, 29(4), 517–538.CrossRefGoogle Scholar
  30. Brandon, R. N. (1990). Adaptation and environment. Princeton, NJ: Princeton University Press.Google Scholar
  31. Brandon, R. N. (2013). A general case for functional pluralism. In P. Huneman (Ed.), Functions: Selection and mechanisms (pp. 97–104). Dordrecht: Springer.CrossRefGoogle Scholar
  32. Brennan, A. (1988). Thinking about nature. Athens: University of Georgia Press.Google Scholar
  33. Brown, P. M., & Cook, B. (2006). Early settlement forest structure in Black Hills ponderosa pine forests. Forest Ecology and Management, 223(1–3), 284–290.CrossRefGoogle Scholar
  34. Buss, L. W. (1983). Evolution, development, and the units of selection. Proceedings of the National Academy of Sciences of the United States of America, 80(5), 1387–1391.CrossRefGoogle Scholar
  35. Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4(8), 765–781. doi: 10.1007/s10021-001-0045-9.CrossRefGoogle Scholar
  36. Christensen, W. D., & Bickhard, M. H. (2002). The process dynamics of normative function. The Monist, 85(1), 3–28.CrossRefGoogle Scholar
  37. Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Washington, DC: Carnegie Institution of Washington.CrossRefGoogle Scholar
  38. Clements, F. E. (1936). Nature and structure of the climax. Journal of Ecology, 24(1), 252–284.CrossRefGoogle Scholar
  39. Collier, J., & Cumming, G. (2011). A dynamical approach to ecosystem identity. In K. deLaplante, B. Brown, & K. A. Peacock (Eds.), Philosophy of ecology (pp. 201–218). Oxford: Elsevier.CrossRefGoogle Scholar
  40. Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199(4335), 1302–1310.CrossRefGoogle Scholar
  41. Cooper, G. J. (2003). The science of the struggle for existence: On the foundations of ecology. Cambridge, NY: Cambridge University Press.CrossRefGoogle Scholar
  42. Cropp, R., & Gabric, A. (2002). Ecosystem adaptation: Do ecosystems maximize resilience? Ecology, 83(7), 2019–2026.CrossRefGoogle Scholar
  43. Cummins, R. C. (1975). Functional analysis. Journal of Philosophy, 72, 741–764.CrossRefGoogle Scholar
  44. Curtis, J. T., & McIntosh, R. P. (1951). An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32(3), 476.CrossRefGoogle Scholar
  45. Davies, P. S. (2001). Norms of nature: Naturalism and the nature of functions. Cambridge, MA: The MIT Press.Google Scholar
  46. DeLaplante, K. (2005). Is ecosystem management a postmodern science? In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 397–416). Amsterdam: Elsevier Academic Press.CrossRefGoogle Scholar
  47. DeLaplante, K., & Odenbaugh, J. (Unpublished). What Isn’t Wrong with Ecosystem Ecology? Retrieved from
  48. DeLaplante, K., & Picasso, V. (2011). The biodiversity-ecosystem function debate in ecology. In K. DeLaplante, B. Brown, & K. A. Peacock (Eds.), Philosophy of ecology (pp. 219–250). Oxford: Elsevier.Google Scholar
  49. Desjardins, E., Barker, G., Lindo, Z., Dieleman, C., & Dussault, A. C. (2015). Promoting resilience. The Quarterly Review of Biology, 90(2), 147–165.CrossRefGoogle Scholar
  50. Doolittle, W. F. (2000). Uprooting the tree of life. Scientific American, 282(2), 90–95.CrossRefGoogle Scholar
  51. Doolittle, W. F. (2014). Natural selection through survival alone, and the possibility of Gaia. Biology and Philosophy, 29(3), 415–423.CrossRefGoogle Scholar
  52. Doolittle, W. F., & Bapteste, E. (2007). Pattern pluralism and the Tree of Life hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2043–2049.CrossRefGoogle Scholar
  53. Dunbar, M. J. (1960). The evolution of stability in marine environments natural selection at the level of the ecosystem. American Naturalist, 94(875), 129–136.CrossRefGoogle Scholar
  54. Dunbar, M. J. (1972). The ecosystem as a unit of natural selection. Transactions of the Connecticut Academy of Arts and Sciences, 44, 113–130.Google Scholar
  55. Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MI: Harvard University Press.Google Scholar
  56. Dupré, J., & O’Malley, M. A. (2009). Varieties of living things: Life at the intersection of lineage and metabolism. Philosophy & Theory in Biology, 1, 1–25.CrossRefGoogle Scholar
  57. Eliot, C. H. (2011). The legend of order and chaos. In K. deLaplante, B. Brown, & K. A. Peacock (Eds.), Philosophy of ecology (pp. 49–107). Oxford: Elsevier.CrossRefGoogle Scholar
  58. Elton, C. S. (1927). Animal ecology. New York: The Macmillan Company.Google Scholar
  59. Elton, C. S. (1930). Animal ecology and evolution. Oxford: Clarendon Press.Google Scholar
  60. Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., et al. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35(1), 557–581.CrossRefGoogle Scholar
  61. Futuyma, D. J. (1986). Evolution and coevolution in communities. In D. M. Raup & D. Jablonski (Eds.), Patterns and processes in the history of life (pp. 369–381). Berlin: Springer.Google Scholar
  62. Gauthier, S., Bergeron, Y., & Simon, I. P. (1996). Effects of fire regime on the serotiny level of jack pine. Journal of Ecology, 84(4), 539–548.CrossRefGoogle Scholar
  63. Gleason, H. A. (1917). The structure and development of the plant association. Bulletin of the Torrey Botanical Club, 44(10), 463–481.CrossRefGoogle Scholar
  64. Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7–26.CrossRefGoogle Scholar
  65. Godfrey-Smith, P. (1993). Functions: Consensus without unity. Pacific Philosophical Quarterly, 74(3), 196–208.Google Scholar
  66. Godfrey-Smith, P. (1994). A modern history theory of functions. Noûs, 28(3), 344–362.CrossRefGoogle Scholar
  67. Godfrey-Smith, P. (2009). Darwinian populations and natural selection. Oxford: Oxford University Press.Google Scholar
  68. Godfrey-Smith, P. (2013). Darwinian individuals. In P. Huneman & F. Bouchard (Eds.), From groups to individuals. Evolution and emerging individuality (pp. 17–36). Cambridge: MIT Press.Google Scholar
  69. Gough, L., Goldberg, D., Hershock, C., Pauliukonis, N., & Petru, M. (2001). Investigating the community consequences of competition among clonal plants. Evolutionary Ecology, 15(4–6), 547–563. doi: 10.1023/A:1016061604630.CrossRefGoogle Scholar
  70. Gould, S. J., & Vrba, E. S. (1982). Exaptation: A missing term in the science of form. Paleobiology, 8(1), 4–15.CrossRefGoogle Scholar
  71. Griffiths, P. E. (2006). Function, homology, and character individuation. Philosophy of Science, 73(1), 1–25.CrossRefGoogle Scholar
  72. Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–347.CrossRefGoogle Scholar
  73. Grimm, N. B. (1995). Why link species and ecosystems? A perspective from ecosystem ecology. In C. G. Jones & J. H. Lawton (Eds.), Linking species & ecosystems (pp. 5–15). New York: Chapman & Hall.CrossRefGoogle Scholar
  74. Grimm, V. (1998). To be, or to be essentially the same: The “self-identity of ecological units”. Trends in Ecology & Evolution, 13(8), 298–299. doi: 10.1016/S0169-5347(98)01421-9.CrossRefGoogle Scholar
  75. Gunderson, L. H., Allen, C. R., & Holling, C. S. (2009). Foundations of ecological resilience. Washington DC: Island Press.Google Scholar
  76. Gunderson, L. H., & Holling, C. S. (2002). Panarchy: Understanding transformations in human and natural systems. Washington: Island Press.Google Scholar
  77. Hagen, J. B. (1989). Research perspectives and the anomalous status of modern ecology. Biology and Philosophy, 4(4), 433–455.CrossRefGoogle Scholar
  78. Hagen, J. B. (1992). An entangled bank: The origins of ecosystem ecology. New Brunswick, NJ: Rutgers University Press.Google Scholar
  79. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23.CrossRefGoogle Scholar
  80. Holling, C. S. (1986). The resilience of terrestrial ecosystems: Local surprise and global change. In W. C. Clark & R. E. Munn (Eds.), Sustainable development of the biosphere (pp. 292–320). Cambridge: Cambridge University Press.Google Scholar
  81. Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. C. Schulze (Ed.), Engineering within ecological constraints (pp. 31–44). Washington, DC: National Academy Press. Accessed 8 July 2014.Google Scholar
  82. Holt, R. D. (1995). Linking species and ecosystems: Where’s darwin? In C. G. Jones & J. H. Lawton (Eds.), Linking species & ecosystems (pp. 273–279). New York: Chapman & Hall.CrossRefGoogle Scholar
  83. Hull, D. L. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11(1), 311–332.CrossRefGoogle Scholar
  84. Huston, M. (1979). A general hypothesis of species diversity. American Naturalist, 113(1), 81–101.CrossRefGoogle Scholar
  85. Hutchinson, G. E. (1965). The ecological theater and the evolutionary play. New Haven: Yale University Press.Google Scholar
  86. Ives, A. R. (2005). Community diversity and stability: Changing perspectives and changing definitions. In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 159–182). Amsterdam: Elsevier Academic Press. Accessed 18 September 2014.Google Scholar
  87. Jax, K. (2005). Function and “functioning” in ecology: What does it mean? Oikos, 111(3), 641–648.CrossRefGoogle Scholar
  88. Jax, K. (2010). Ecosystem functioning. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  89. Jax, K., Jones, C. G., & Pickett, S. T. A. (1998). The self-identity of ecological units. Oikos, 82(2), 253.CrossRefGoogle Scholar
  90. Keane, R.E., Ryan, K.C., Veblen, T.T., Allen, C.D., Logan, J., & Hawkes, B. (2002). Cascading effects of fire exclusion in rocky mountain ecosystems: A literature review (General Technical Report No. RMRSGTR-91). Fort Collins: Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  91. Krohs, U. (2010). Dys-, mal- et non-: l’autre face de la fonctionnalité. In A. de Ricqlès & J. Gayon (Eds.), Les fonctions: Des organismes aux artefacts (pp. 337–351). Paris: PUF.Google Scholar
  92. Lamotte, M., & Blandin, P. (1985). La transformation des écosystèmes cadre et moteur de l’évolution des espèces. In L. Bullini, M. Ferraguti, F. Mondella, & A. Oliverio (Eds.), La vita e la sua storia. Stato e prospettive degli studi de genetica (pp. 161–190). Milan: Scientia.Google Scholar
  93. Lehman, C. L., & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. The American Naturalist, 156(5), 534–552.CrossRefGoogle Scholar
  94. Leibold, M. A., & Norberg, J. (2004). Biodiversity in metacommunities: Plankton as complex adaptive systems? Limnology and Oceanography, 49, 1278–1289.CrossRefGoogle Scholar
  95. Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1(5), 431–436. doi: 10.1007/s100219900037.CrossRefGoogle Scholar
  96. Levin, S. A. (1999). Fragile dominion: Complexity and the commons. Reading, MA: Perseus Books.Google Scholar
  97. Levin, S. A. (2005). Self-organization and the emergence of complexity in ecological systems. Bioscience, 55(12), 1075–1079.CrossRefGoogle Scholar
  98. Levins, R., & Lewontin, R. C. (1985). The dialectical biologist. Cambridge, MA: Harvard University Press.Google Scholar
  99. Loehle, C., & Pechmann, J. H. K. (1988). Evolution: The missing ingredient in systems ecology. American Naturalist, 132(6), 884–899.CrossRefGoogle Scholar
  100. Loreau, M. (2000). Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos, 91(1), 3–17.CrossRefGoogle Scholar
  101. Loreau, M. (2010a). Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical transactions of the Royal Society of London Series B: Biological Sciences, 365(1537), 49–60. doi: 10.1098/rstb.2009.0155.CrossRefGoogle Scholar
  102. Loreau, M. (2010b). From populations to ecosystems theoretical foundations for a new ecological synthesis. Princeton: Princeton University Press.Google Scholar
  103. Loreau, M., Downing, A., Emmerson, M., Gonzalez, A., Hughes, J., Inchausti, P., et al. (2002). A new look at the relationship between diversity and stability. In M. Loreau, S. Naeem, & P. Inchausti (Eds.), Biodiversity and ecosystem functioning: Synthesis and perspectives. Oxford, NY: Oxford University Press.Google Scholar
  104. Loreau, M., Mouquet, N., & Holt, R. D. (2003). Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. Ecology Letters, 6(8), 673–679. doi: 10.1046/j.1461-0248.2003.00483.x.CrossRefGoogle Scholar
  105. Maclaurin, J., & Sterelny, K. (2008). What is biodiversity?. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  106. Matthen, M. P. (1988). Biological functions and perceptual content. Journal of Philosophy, 85(1), 5–27.CrossRefGoogle Scholar
  107. McCann, K. S. (2005). Perspectives on diversity, structure, and stability. In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 183–200). Amsterdam: Elsevier Academic Press.Google Scholar
  108. McLaughlin, P. (2001). What functions explain: Functional explanation and self-reproducing systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  109. Mikkelson, G. M. (2004). Biological diversity, ecological stability, and downward causation. In M. Oksanen & J. Pietarinen (Eds.), Philosophy and biodiversity (pp. 119–129). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  110. Mikkelson, G. M. (2009). Diversity-stability hypothesis. In J. B. Callicott, R. Frodeman, V. Davion, B. G. Norton, C. Palmer, & P. B. Thompson (Eds.), Encyclopedia of environmental ethics and philosophy. Farmington Hills, MI: Macmillan Press.Google Scholar
  111. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. Washington, DC: Island Press.Google Scholar
  112. Millikan, R. G. (1989a). In defense of proper functions. Philosophy of Science, 56(6), 288–302.CrossRefGoogle Scholar
  113. Millikan, R. G. (1989b). An ambiguity in the notion “function”. Biology and Philosophy, 4(2), 172–176.CrossRefGoogle Scholar
  114. Mills, L. S., Soulé, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. BioScience, 43(4), 219–224.CrossRefGoogle Scholar
  115. Mills, S. K., & Beatty, J. H. (1979). The propensity interpretation of fitness. Philosophy of Science, 46(2), 263–286.CrossRefGoogle Scholar
  116. Mitchell, S. D. (1993). Dispositions or etiologies? A comment on Bigelow and Pargetter. Journal of Philosophy, 60(5), 249–259.CrossRefGoogle Scholar
  117. Mitton, J. B., & Grant, M. C. (1996). Genetic variation and the natural history of quaking aspen. BioScience, 46(1), 25–31.CrossRefGoogle Scholar
  118. Mori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews, 88(2), 349–364.CrossRefGoogle Scholar
  119. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. British Journal for the Philosophy of Science, 60(4), 813–841.CrossRefGoogle Scholar
  120. Mutch, R. W. (1970). Wildland fires and ecosystems: A hypothesis. Ecology, 51(6), 1046–1051.CrossRefGoogle Scholar
  121. Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology, 12(1), 39–45.CrossRefGoogle Scholar
  122. Naeem, S. (2002). Ecosystem consequences of biodiversity loss: The evolution of a paradigm. Ecology, 83(6), 1537. doi: 10.2307/3071972.CrossRefGoogle Scholar
  123. Neander, K. (1991a). The teleological notion of “function”. Australasian Journal of Philosophy, 69(4), 454–468.CrossRefGoogle Scholar
  124. Neander, K. (1991b). Functions as selected effects: The conceptual analyst’s defense. Philosophy of Science, 58(2), 168–184.CrossRefGoogle Scholar
  125. Nicolson, M., & McIntosh, R. P. (2002). H. A. Gleason and the individualistic hypothesis revisited. Bulletin of the Ecological Society of America, 83(2), 133–142.Google Scholar
  126. Norberg, J. (2004). Biodiversity and ecosystem functioning: A complex adaptive systems approach. Limnology and Oceanography, 49, 1269–1277.CrossRefGoogle Scholar
  127. Norberg, J., Swaney, D. P., Dushoff, J., Lin, J., Casagrandi, R., & Levin, S. A. (2001). Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11376–11381.CrossRefGoogle Scholar
  128. Nunes-Neto, N., Moreno, A., & El-Hani, C.N. (2013a). The implicit consensus about function in philosophy of ecology. In Nunes-Neto, N., El-Hani, C.N., & Moreno, A. (Eds.), The functional discourse in contemporary ecology (pp. 40–65). Salvador: Doctoral dissertation, Universidade Federal da Bahia.Google Scholar
  129. Nunes-Neto, N., Do Carmo, R.S., & El-Hani, C.N. (2013b). An epistemological analysis of the functional discourse in the Biodiversity and Ecosystem Functioning research program. In N. Nunes-Neto, C. N. El-Hani, A. Moreno (Eds.), The functional discourse in contemporary ecology (pp. 15–39). Salvador: Doctoral dissertation, Universidade Federal da Bahia.Google Scholar
  130. Nunes-Neto, N., Moreno, A., & El-Hani, C. N. (2014). Function in ecology: An organizational approach. Biology and Philosophy, 29(1), 123–141.CrossRefGoogle Scholar
  131. Odenbaugh, J. (2001). Ecological stability, model building, and environmental policy: A reply to some of the pessimism. Philosophy of Science, 68(S1), S493.CrossRefGoogle Scholar
  132. Odenbaugh, J. (2010). On the very idea of an ecosystem. In A. Hazlett (Ed.), New waves in metaphysics (pp. 240–258). Basingstoke, NY: Palgrave Macmillan.Google Scholar
  133. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.Google Scholar
  134. O’Neill, R. V., Deangelis, D. L., Waide, J. B., & Allen, G. E. (1986). A hierarchical concept of ecosystems. Princeton: Princeton University Press.Google Scholar
  135. Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100(910), 65–75.CrossRefGoogle Scholar
  136. Paine, R. T. (1995). A conversation on refining the concept of keystone species. Conservation Biology, 9(4), 962–964.CrossRefGoogle Scholar
  137. Partridge, E. (2000). Reconstructing ecology. In D. Pimentel, L. Westra, & R. F. Noss (Eds.), Ecological integrity: Integrating environment, conservation, and health (pp. 79–97). Washington, DC: Island Press.Google Scholar
  138. Pickett, S. T., & Ostfeld, R. S. (1995). The shifting paradigm in ecology. In R. L. Knight & S. F. Bates (Eds.), A new century for natural resources management. Washington, DC: Island Press.Google Scholar
  139. Pickett, S. T., & White, P. S. (1985). The ecology of natural disturbance and patch dynamics. Orlando, FL: Academic Press.Google Scholar
  140. Pickett, S. T., Wu, J., & Cadenasso, M. L. (1999). Patch dynamics and the ecology of disturbed ground: A framework for synthesis. In L. R. Walker (Ed.), Ecosystems of disturbed ground (pp. 707–722). Amsterdam, NY: Elsevier.Google Scholar
  141. Pimm, S. L. (1991). The balance of nature?: Ecological issues in the conservation of species and communities. Chicago: University of Chicago Press.Google Scholar
  142. Rosenberg, A., & Bouchard, F. (2005). Matthen and Ariew’s obituary for fitness: Reports of its death have been greatly exaggerated. Biology and Philosophy, 20(2–3), 343–353.CrossRefGoogle Scholar
  143. Saborido, C., Mossio, M., & Moreno, A. (2011). Biological organization and cross-generation functions. British Journal for the Philosophy of Science, 62(3), 583–606.CrossRefGoogle Scholar
  144. Sagoff, M. (2003). The plaza and the pendulum: Two concepts of ecological science. Biology and Philosophy, 18(4), 529–552.CrossRefGoogle Scholar
  145. Schlosser, G. (1998). Self-re-production and functionality. Synthese, 116(3), 303–354.CrossRefGoogle Scholar
  146. Schwilk, D. W., & Ackerly, D. D. (2001). Flammability and serotiny as strategies: Correlated evolution in pines. Oikos, 94(2), 326–336.CrossRefGoogle Scholar
  147. Shrader-Frechette, K., & McCoy, E. D. (1993). Method in ecology: Strategies for conservation. Cambridge, NY: Cambridge University Press.CrossRefGoogle Scholar
  148. Sober, E., & Wilson, D. S. (1994). A critical review of philosophical work on the units of selection problem. Philosophy of Science, 61(4), 534–555.CrossRefGoogle Scholar
  149. Sterelny, K. (2005). The elusive synthesis. In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 311–329). Amsterdam: Elsevier Academic Press.Google Scholar
  150. Sterelny, K. (2006). Local ecological communities. Philosophy of Science, 73(2), 215–231.CrossRefGoogle Scholar
  151. Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80(5), 1455–1474.Google Scholar
  152. Turner, J. S. (2004). Extended phenotypes and extended organisms. Biology and Philosophy, 19(3), 327–352.CrossRefGoogle Scholar
  153. Walsh, D. M. (1996). Fitness and function. British Journal for the Philosophy of Science, 47(4), 553–574.CrossRefGoogle Scholar
  154. White, P. S., Harrod, J., Romme, W., & Betancourt, J. (1999). The role of disturbance and temporal dynamics. In R. C. Szaro, N. C. Johnson, W. T. Sexton, & A. J. Malk (Eds.), Ecological stewardship: A common reference for ecosystem management (Vol. 2, pp. 281–312). Oxford: Elsevier Science.Google Scholar
  155. Whittaker, R. H. (1951). A criticism of the plant association and climatic climax concepts. Northwest Science, 25(1), 17–31.Google Scholar
  156. Whittaker, R. H. (1975). Communities and ecosystems (2nd ed.). New York: Macmillan, Collier.Google Scholar
  157. Whittaker, R. H., & Woodwell, G. M. (1972). Evolution of natural communities. In J. A. Wiens (Ed.), Ecosystem structure and function (pp. 137–159). Corvallis: Oregon State University Press.Google Scholar
  158. Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton, NJ: Princeton University Press.Google Scholar
  159. Wilson, D. S. (1976). Evolution on the level of communities. Science, 192(4246), 1358–1360.CrossRefGoogle Scholar
  160. Wilson, D. S., & Sober, E. (1989). Reviving the superorganism. Journal of Theoretical Biology, 136(3), 337–356.CrossRefGoogle Scholar
  161. Wouters, A. (2003). Four notions of biological function. Studies in History and Philosophy of Science Part C, 34(4), 633–668.CrossRefGoogle Scholar
  162. Wouters, A. (2005). The function debate in philosophy. Acta Biotheoretica, 53(2), 123–151.CrossRefGoogle Scholar
  163. Wouters, A. (2013). Biology’s functional perspective: Roles, advantages and organization. In K. Kampourakis (Ed.), The philosophy of biology: A companion for educators (pp. 455–486). Dordrecht: Springer Science & Business Media.CrossRefGoogle Scholar
  164. Wright, L. (1973). Functions. Philosophical Review, 82(2), 139–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of Toronto/IHPSTTorontoCanada
  2. 2.Université Paris I/IHPSTParisFrance
  3. 3.Université de MontréalMontréalCanada

Personalised recommendations