Synthese

, Volume 193, Issue 5, pp 1509–1534 | Cite as

The cognitive neuroscience revolution

S.I. : Neuroscience and Its Philosophy

Abstract

We outline a framework of multilevel neurocognitive mechanisms that incorporates representation and computation. We argue that paradigmatic explanations in cognitive neuroscience fit this framework and thus that cognitive neuroscience constitutes a revolutionary break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations aim to be mechanistic through and through. Neurocognitive explanations aim to integrate computational and representational functions and structures across multiple levels of organization in order to explain cognition. To a large extent, practicing cognitive neuroscientists have already accepted this shift, but philosophical theory has not fully acknowledged and appreciated its significance. As a result, the explanatory framework underlying cognitive neuroscience has remained largely implicit. We explicate this framework and demonstrate its contrast with previous approaches.

Keywords

Cognitive neuroscience Multilevel mechanisms Explanation Integration Computation Representation 

References

  1. Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85, 249–277.CrossRefGoogle Scholar
  2. Anderson, J. R. (1983). The architecture of cognition. Cambridge: Harvard University Press.Google Scholar
  3. Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
  4. Attneave, F. (1961). In defense of homunculi. In W. Rosenblith (Ed.), Sensory communication (pp. 777–782). Cambridge, MA: MIT Press.Google Scholar
  5. Barberis, S. D. (2013). Functional analyses, mechanistic explanations, and explanatory tradeoffs. Journal of Cognitive Science, 14(3), 229–251.CrossRefGoogle Scholar
  6. Barrett, D. (2014). Functional analysis and mechanistic explanation. Synthese. doi:10.1007/s11229-014-0410-9.
  7. Batterman, R. (2013). The tyranny of scales. In R. W. Batterman (Ed.), The Oxford handbook of philosophy of physics (pp. 255–286). New York: oxford University Press.CrossRefGoogle Scholar
  8. Bechtel, W. (2015). Investigating neural representations: The tale of place cells. Synthese.Google Scholar
  9. Bechtel, W. (2001). Cognitive neuroscience: Relating neural mechanisms and cognition. In P. Machamer, P. McLaughlin, & R. Grush (Eds.), Philosophical reflections on the methods of neuroscience. Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  10. Bechtel, W. (2008). Mental mechanisms: Philosophical Perspectives on cognitive neuroscience. London: Routledge.Google Scholar
  11. Bechtel, W., & Abrahamsen, A. (2013). Thinking dynamically about biological mechanisms: Networks of coupled oscillators. Foundations of Science, 18, 707–723.CrossRefGoogle Scholar
  12. Bechtel, W., & Shagrir, O. (forthcoming). The non-redundant contributions of Marr’s three levels of analysis for explaining information processing mechanisms. Topics in Cognitive Science.Google Scholar
  13. Bickle, J. (2003). Philosophy and neuroscience: A ruthlessly reductive account. Dordrecht: Kluwer.CrossRefGoogle Scholar
  14. Bickle, J. (2006). Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience. Synthese, 151, 411–434.CrossRefGoogle Scholar
  15. Bogen, J. (2005). Regularities and causality: Generalizations and causal explanations. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 397–420.CrossRefGoogle Scholar
  16. Boone, W., & Piccinini, G. (unpublished). Mechanistic abstraction.Google Scholar
  17. Burge, T. (2010). Origins of objectivity. Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Caianiello, E. R. (1961). Outline of a theory of thought processes and thinking machines. Journal of Theoretical Biology, 1(2), 204–235.CrossRefGoogle Scholar
  19. Chemero, A., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science, 75, 1–27.CrossRefGoogle Scholar
  20. Chirimuuta, M. (2014). Minimal models and canonical neural computations: The distinctness of computational explanation in neuroscience. Synthese, 191(2), 127–154.CrossRefGoogle Scholar
  21. Churchland, P. M. (1981). Eliminative materialism and the propositional attitudes. Journal of Philosophy, 78, 67–90.Google Scholar
  22. Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind/brain. Cambridge, MA: MIT Press.Google Scholar
  23. Craver, C. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.CrossRefGoogle Scholar
  24. Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press.Google Scholar
  25. Cummins, R. (2000). ‘How does it work?’ vs. ‘What are the laws?’ Two conceptions of psychological explanation. In K. F. C. & W. R. A. (Eds.), Explanation and cognition. Cambridge: Cambridge University Press.Google Scholar
  26. Daugman, J. G. (1990). Brain metaphor and brain theory. In E. L. Schwartz (Ed.), Computational neuroscience (pp. 9–18). Cambridge, MA: MIT Press.Google Scholar
  27. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press.Google Scholar
  28. Dennett, D. C. (1978). Brainstorms. Cambridge, MA: MIT Press.Google Scholar
  29. Dretske, F. I. (1981). Knowledge and the flow of information. Cambridge, MA: MIT Press.Google Scholar
  30. Dretske, F. I. (1988). Explaining behavior: Reasons in a world of causes. Cambridge, MA: MIT Press.Google Scholar
  31. Egan, F., & Matthews, R. (2006). Doing cognitive neuroscience: A third way. Synthese, 153, 377–391.CrossRefGoogle Scholar
  32. Ermentrout, G. B., & Terman, D. H. (2010). Mathematical foundations of neuroscience. New York: Springer.Google Scholar
  33. Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. Oxford: Oxford University Press.Google Scholar
  34. Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6, 205–254.CrossRefGoogle Scholar
  35. Fodor, J. A. (1968a). Psychological explanation. New York: Random House.Google Scholar
  36. Fodor, J. A. (1968b). The appeal to tacit knowledge in psychological explanation. Journal of Philosophy, 65, 627–640.CrossRefGoogle Scholar
  37. Fodor, J. A. (1974). Special sciences. Synthese, 28, 77–115.CrossRefGoogle Scholar
  38. Fodor, J. A. (1997). Special sciences: Still autonomous after all these years. In J. Tomberlin (Ed.), Philosophical perspectives 11: Mind, causation, and world (pp. 149–163). Boston: Blackwell.Google Scholar
  39. Fodor, J. A. (1998). Concepts. Oxford: Clarendon Press.CrossRefGoogle Scholar
  40. Fox, P. T., Minton, M. A., Raichle, M. E., Miezin, F. M., Allman, J. M., & Van Essen, D. C. (1986). Mapping human visual cortex with positron emission tomography. Nature, 323, 806–809.CrossRefGoogle Scholar
  41. Fresco, N. (2014). Physical computation and cognitive science. New York: Springer.CrossRefGoogle Scholar
  42. Freud, S. (1895/1966). Project for a scientific psychology. In E. Jones (Ed.) & J. Strachey (Trans.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295–397). London: Hogarth Press.Google Scholar
  43. Gallistel, R. G., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. New York: Wiley/Blackwell.CrossRefGoogle Scholar
  44. Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(3), S342–S353.CrossRefGoogle Scholar
  45. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.CrossRefGoogle Scholar
  46. Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. New York: Oxford University Press.CrossRefGoogle Scholar
  47. James, W. (1890/1983). The principles of psychology. Cambridge, MA: Harvard University Press.Google Scholar
  48. Jilk, D., Lebiere, C., O’Reilly, R., & Anderson, J. (2008). SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence, 20(3), 197–218.CrossRefGoogle Scholar
  49. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. New York: Cambridge University Press.Google Scholar
  50. Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183(3), 339–373.Google Scholar
  51. Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical models. Philosophy of Science, 78(4), 601–627.CrossRefGoogle Scholar
  52. Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734–766.CrossRefGoogle Scholar
  53. Kosslyn, S. (1980). Image and mind. Cambridge, MA: Harvard University Press.Google Scholar
  54. Kosslyn, S. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press.Google Scholar
  55. Kosslyn, S., & Van Kleeck, M. H. (1990). Broken brains and normal minds: Why humpty–dumpty needs a skeleton. In E. L. Schwartz (Ed.), Computational neuroscience. Cambridge, MA: MIT Press.Google Scholar
  56. Kosslyn, S., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery. New York: Oxford University Press.CrossRefGoogle Scholar
  57. Laird, J. E. (2012). The soar cognitive architecture. Cambridge, MA: MIT Press.Google Scholar
  58. Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33, 1–64.CrossRefGoogle Scholar
  59. Levy, A. (2013). What was Hodgkin and Huxley’s achievement? British Journal for Philosophy of Science. doi:10.1093/bjps/axs043.
  60. Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241–261.CrossRefGoogle Scholar
  61. Lycan, W. (1981). Form, function, and feel. Journal of Philosophy, 78, 24–50.CrossRefGoogle Scholar
  62. Lycan, W. (1990). The continuity of levels of nature. In W. Lycan (Ed.), Mind and cognition. Malden, MA: Blackwell.Google Scholar
  63. Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.CrossRefGoogle Scholar
  64. Maley, C., & Piccinini, G. (2013). Get the latest upgrade: Functionalism 6.3.1. Philosophia Scientiae, 17(2), 135–149.CrossRefGoogle Scholar
  65. Marr, D. (1982). Vision. San Francisco: W. H. Freeman and Company.Google Scholar
  66. McClelland, J. L., & Lambon Ralph, M. A. (Eds.). (2013). Cognitive neuroscience: Emergence of mind from brain. The biomedical & life sciences collection. London: Henry Stewart Talks Ltd.Google Scholar
  67. McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.CrossRefGoogle Scholar
  68. Milkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.Google Scholar
  69. Morgan, A. (2014). Representations gone mental. Synthese, 191(2), 213–244.CrossRefGoogle Scholar
  70. Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183.CrossRefGoogle Scholar
  71. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.Google Scholar
  72. Newell, A., & Simon, H. A. (1976). Computer science as an empirical enquiry: Symbols and search. Communications of the ACM, 19, 113–126.CrossRefGoogle Scholar
  73. O’Doherty, J., Hampton, A., & Kim, H. (2007). Model-based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104, 35–53.CrossRefGoogle Scholar
  74. O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. Cambridge, MA: MIT Press.Google Scholar
  75. O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., & Contributors. (2014). Computational cognitive neuroscience. Wiki Book (2nd ed.). http://ccnbook.colorado.edu.
  76. Piccinini, G. (unpublished). Activities are manifestations of causal powers.Google Scholar
  77. Piccinini, G. (2007). Computational modeling vs. computational explanation: Is everything a turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.CrossRefGoogle Scholar
  78. Piccinini, G. (2008). Computers. Pacific Philosophical Quarterly, 89(1), 32–73.CrossRefGoogle Scholar
  79. Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.CrossRefGoogle Scholar
  80. Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283–311.CrossRefGoogle Scholar
  81. Piccinini, G., & Maley, C. (2014). The metaphysics of mind and the multiple sources of multiple realizability. In M. Sprevak & J. Kallestrup (Eds.), New waves in the philosophy of mind. New York: Palgrave Macmillan.Google Scholar
  82. Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38.CrossRefGoogle Scholar
  83. Posner, M. I. (1976). Chronometric explorations of mind. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  84. Posner, M. I., & Raichle, M. E. (1994). Images of mind. New York: Scientific American Books.Google Scholar
  85. Povich, M. (forthcoming). Mechanisms and model-based fMRI. Philosophy of Science.Google Scholar
  86. Putnam, H. (1967). Psychological predicates. Art, philosophy, and religion. Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  87. Putnam, H. (1975). Philosophy and our mental life. In H. Putnam (Ed.), Mind, language and reality: Philosophical papers (Vol. 2, pp. 291–303). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  88. Pylyshyn, Z. W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88, 16–45.CrossRefGoogle Scholar
  89. Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.Google Scholar
  90. Pylyshyn, Z. W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Sciences, 25(2), 157–237.Google Scholar
  91. Pylyshyn, Z. W. (2003). Return of the mental image: Are there really pictures in the head? Trends in Cognitive Science, 7(3), 113–118.CrossRefGoogle Scholar
  92. Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  93. Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Washington, DC: Spartan.Google Scholar
  94. Roskies, A. (2009). Brain–mind and structure–function relationships: A methodological response to Coltheart. Philosophy of Science, 76(5), 927–939.CrossRefGoogle Scholar
  95. Rumelhart, D. E., McClelland, J. M., & The PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
  96. Rusanen, A.-M., & Lappi, O. (2007). The limits of mechanistic explanation in cognitive science. In S. Vosniadou, D. Kayser, & A. Protopapas (Eds.), Proceedings of the European cognitive science conference 2007 (pp. 284–289). Howe: Lawrence Erlbaum Associates.Google Scholar
  97. Scarantino, A. (2015). Information as a probabilistic difference maker. Australian Journal of Philosophy. doi:10.1080/00048402.2014.993665.
  98. Schaffner, K. F. (2008). Theories, models, and equations in biology: The heuristic search for emergent simplifications in neurobiology. Philosophy of Science, 75, 1008–1021.CrossRefGoogle Scholar
  99. Shagrir, O. (2010a). Brains as analog-model computers. Studies in History and Philosophy of Science, 41, 271–279.CrossRefGoogle Scholar
  100. Shagrir, O. (2010b). Marr on computational-level theories. Philosophy of Science, 77, 477–500.CrossRefGoogle Scholar
  101. Smart, J. J. C. (1959). Sensations and brain processes. The Philosophical Review, 68(2), 141–156.CrossRefGoogle Scholar
  102. Smart, J. J. C. (2007). The mind/brain identity theory. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2007 ed.). http://plato.stanford.edu/archives/sum2007/entries/mind-identity/.
  103. Stein, R. (1965). A theoretical analysis of neuronal variability. Biophysical Journal, 5(2), 173–194.CrossRefGoogle Scholar
  104. Thagard, P. (2007). Coherence, truth, and the development of scientific knowledge. Philosophy of Science, 74, 28–47.CrossRefGoogle Scholar
  105. Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6(2), 171–178.CrossRefGoogle Scholar
  106. Treisman, A. (2009). Attention: Theoretical and psychological perspectives. In M. Gazzaniga (Ed.), The cognitive neurosciences (4th ed., pp. 189–204). Cambridge, MA: MIT Press.Google Scholar
  107. Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.CrossRefGoogle Scholar
  108. Van Eck, D., & Weber, E. (2014). Function ascription and explanation: Elaborating an explanatory utility desideratum for ascriptions of technical functions. Erkenntnis. doi:10.1007/s10670-014-9605-1.
  109. Vartanian, A. (1973). In P. P. Wiener (Ed.), Dictionary of the history of ideas: Studies of selected pivotal ideas. New York: Scriners.Google Scholar
  110. Waxman, S. (1972). Regional differentiation of the axon: A review with special reference to the concept of the multiplex neuron. Brain Research, 47, 269–288.CrossRefGoogle Scholar
  111. Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.Google Scholar
  112. Weber, M. (2008). Causes without mechanisms: Experimental regularities, physical laws, and neuroscientific explanation. Philosophy of Science, 75(5), 995–1007.CrossRefGoogle Scholar
  113. Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. Oxford: Oxford University Press.CrossRefGoogle Scholar
  114. Weiskopf, D. (2011). Models and mechanisms in psychological explanation. Synthese, 183(3), 313–338.CrossRefGoogle Scholar
  115. Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.CrossRefGoogle Scholar
  116. Winsberg, E. (2010). Science in the age of computer simulation. Chicago: University of Chicago Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA
  2. 2.University of Missouri – St. LouisSt. LouisUSA

Personalised recommendations