Skip to main content
Log in

Complexity of equational theory of relational algebras with standard projection elements

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The class \(\mathsf{TPA}\) of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of \(\mathsf{TPA}\) nor the first order theory of \(\mathsf{TPA}\) are decidable. Moreover, we show that the set of all equations valid in \(\mathsf{TPA}\) is exactly on the \(\Pi ^1_1\) level. We consider the class \(\mathsf{TPA}^-\) of the relation algebra reducts of \(\mathsf{TPA}\)’s, as well. We prove that the equational theory of \(\mathsf{TPA}^-\) is much simpler, namely, it is recursively enumerable. We also give motivation for our results and some connections to related work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andréka, H. (1990). Complexity of the equations valid in algebras of relations. Thesis for DSc with Hungarian Academy of Sciences, Budapest

  • Andréka, H., & Németi, I. (2012). Reducing first-orde logic to \(\text{ Df }_3\), free algebras. In H. Andréka, M. Ferenczi, & I. Németi (Eds.), Cylindric-like algebras and algebraic logic (pp. 15–35). Bolyai society mathematical studies (series editor: D. Miklós). Berlin: Springer Verlag.

  • Andréka, H., Németi, I., & Sain, I. (1994). Applying algebraic logic to logic. In T. Rus, M. Nivat, C. Rattray, & G. Scollo (Eds.), Algebraic methodology and software technology (AMAST’93), Proceedings of the third international conference on algebraic methodology and software technology, The Netherlands, 21–25 June 1993. Workshops in computing (pp. 5–26), University of Twente. London: Springer-Verlag.

    Chapter  Google Scholar 

  • Andréka, H., Németi, I., & Sain, I. (2001). Algebraic logic. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd edn., Vol. II, pp. 133–247). Dordrecht: Kluwer Academic Publishers. Preprint form available from the home page of the Rényi Institute.

    Chapter  Google Scholar 

  • Andréka, H., Németi, I., Sain, I., & Kurucz, Á. (1995). General algebraic logic including algebraic model theory: An overview. In D. M. Gabbay L. Csirmaz, M. de Rijke (Eds.), Logic colloquium’92. Proceedings, Veszprém, Hungary, 1992. Studies in logic, language and computation, (pp. 1–60). Stanford: CSLI Publications.

  • Biró, B. (1992). Non-finite-axiomatizability results in algebraic logic. Journal of Symbolic Logic, 57(3), 832–843.

    Article  Google Scholar 

  • Blok, W. J., & Pigozzi, D. L. (1989). Algebraizable logics. Memoirs of the American Mathematical Society, 77(396), vi+78.

    Article  Google Scholar 

  • Craig, W. (1965). Boolean notions extended to higher dimensions. In L. Henkin, J. W. Addison, & A. Tarski (Eds.), The theory of models (pp. 55–69). Amsterdam: North-Holland.

    Google Scholar 

  • Craig, W., & Vaught, R. L. (1958). Finite axiomatizability using additional predicates. Journal of Symbolic Logic, 23, 289.

    Article  Google Scholar 

  • Ferenczi, M. (2012). A new representation theory, representing cylindric like algebras by relativized set algebras. In H. Andréka, M. Ferenczi, & I. Németi (Eds.), Cylindric-like algebras and algebraic logic (pp. 135–162). Bolyai society mathematical studies (series editor: D. Miklós). Berlin: Springer Verlag.

  • Ferenczi, M. (2012). Representation theory based on relativised set algebras originating from logic. Dissertation for D. Sc. with Hungarian Academy of Sciences, Budapest. In Hungarian, ix+125 pp.

  • Formisano, A., Omodeo, E.G. (1998). An equational re-engineering of set theories. In FTP (LNCS selection) (pp. 175–190).

    Chapter  Google Scholar 

  • Henkin, L. (1987). L. Henkin’s remark in the discussion following R. D. Maddux’s lecture at the “Asilomar Conference”, July 6–12.

  • Henkin, L., & Monk, J. D. (1974). Cylindric Algebras and related structures. Proceedings of the Tarski Symposium on American Mathematical Society, 25, 105–121.

    Article  Google Scholar 

  • Henkin, L., Monk, J. D., & Tarski, A. (1985). Cylindric algebras part II. Amsterdam: North-Holland.

    Google Scholar 

  • Jónsson, B. (1982). On binary relations. In G. Hutchinson (Ed.), Proceedings of the NIH conference on universal algebra and lattice theory (pp. 2–5). Bethesda, MA: Laboratory of Computer Research and Technology, National Institute of Health.

  • Jónsson, B. (1991). The theory of binary relations. In H. Andréka, J. D. Monk, & I. Németi (Eds.), Algebraic logic. Proceedings of the conference, Budapest 1988 (pp. 245–292). Amsterdam: Colloq. Math. Soc. J. Bolyai, North-Holland.

  • Kurucz, Á. (2009). Weakly associative relation algebras with projections. Mathematical Logic Quarterly, 55, 138–153.

    Article  Google Scholar 

  • Kurucz, Á., & Németi, I. (2000). Representability of pairing relation algebras depends on your ontology. Fundamenta Informaticae, 44(4), 397–420.

    Google Scholar 

  • Maddux, R.D. (1987). Finitary algebraic logic. Invited lecture at the conference “Algebras, Lattices and Logic”, Asilomar California, July 6–12.

  • Maddux, R. D. (1989). Finitary algebraic logic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 35, 321–332.

    Article  Google Scholar 

  • Mikulás, Sz., Sain, I., & Simon, A. (1991). The complexity of the equational theory of relational algebras with standard projection elements. Technical report, Mathematical Institute of the Hungarian Academy of Sciences, Budapest.

  • Mikulás, Sz, Sain, I., & Simon, A. (1992). Complexity of equational theory of relational algebras with projection elements. Bulletin of the Section of Logic, 21(3), 103–111.

    Google Scholar 

  • Monk, J. D. (1970). On an algebra of sets of finite sequences. Journal of Symbolic Logic, 35, 19–28.

    Article  Google Scholar 

  • Németi, I. (1986). Free algebras and decidability in algebraic logic. Dissertation for D. Sc. with Hungarian Academy of Sciences, Budapest. In Hungarian, xviii+169 pp.

  • Németi, I. (1987). On varieties of cylindric algebras with applications to logic. Annals of Pure and Applied Logic, 36, 235–277.

    Article  Google Scholar 

  • Németi, I. (1991). Algebraization of quantifier logics, an introductory overview. In: W. J. Blok, D. L. Pigozzi (Eds.), Studia logica, 50, No 3/4 (a special issue devoted to Algebraic Logic) (pp. 485–570). Strongly updated and expanded [e.g. with proofs] version is electronically available as: http://circle.math-inst.hu/pub/algebraic-logic/survey.dvi, survey.ps.

  • Németi, I., & Simon, A. (2009). Weakly higher order cylindric algebras and finite axiomatization of the representables. Studia Logica, 91, 53–62.

    Article  Google Scholar 

  • Rogers, H. (1967). Theory of recursive functions and effective computability. New York: McGraw Hill.

    Google Scholar 

  • Sági, G. (2000). A completeness theorem for higher order logics. Journal of Symbolic Logic, 65(2), 857–884.

    Article  Google Scholar 

  • Sain, I. (1988). On the search for a finitizable algebraization of first order logic (shortened version a). Technical report, Mathematical Institute of the Hungarian Academy of Science, Budapest.

  • Sain, I. (1994). On finitizing first order logic. Bulletin of the Section of Logic, 23(2), 66–79.

    Google Scholar 

  • Sain, I. (1995). On the problem of finitizing first order logic and its algebraic counterpart (A Survey of results and methods). In D.M. Gabbay, L. Csirmaz, M. de Rijke (Eds.), Logic colloquium’92 (Proceedings, Veszprém, Hungary, 1992). Studies in logic, language and computation (pp. 243–292). Stanford: CSLI Publications.

  • Sain, I. (2012). Definability issues in universal logic. In H. Andréka, M. Ferenczi, & I. Németi (Eds.), Cylindric-like algebras and algebraic logic (pp. 393–419). Bolyai society mathematical studies (series editor: D. Miklós) Berlin: Springer Verlag.

  • Sain, I. (2000). On the Search for a Finitizable Algebraization of First Order Logic. Logic Journal of the IGPL, 8(4):495–589. Electronically available as: http://www3.oup.co.uk/igpl/Volume_08/Issue_04/.

    Article  Google Scholar 

  • Sain, I., & Németi, I.(1995). Fork algebras in usual and in non-well-founded settheories. (extended abstract) part i and part ii. Bulletin of the Section of Logic, 24(3 and 4):158–168 and 182–192.

  • Sayed Ahmed, T. (2005). Algebraic logic, where does it stand today? Bulletin of Symbolic Logic, 11(4), 465–516.

    Article  Google Scholar 

  • Sayed Ahmed, T. (2015). On notions of representability for cylindric polyadic algebras, and a solution to the finitizability problem for quantifier logics with equality. Mathematical Logic Quarterly (in press).

    Article  Google Scholar 

  • Simon, A. (1993). What the finitization problem is not. In Rauszer, C. (ed.), Algebraic methods in logic and in computer science (Proceedings of the ’91 Banach Semester, Banach Center), Vol. 28 of Banach Center Publications, pp. 95–116. Warszawa: Institute of Mathematics Polish Academy of Sciences.

    Article  Google Scholar 

  • Tarski, A., & Givant, S. (1987). A formalization of set theory without variables (Vol. 41). Providence, RI: AMS Colloquium Publications.

    Google Scholar 

  • van de Vel, M. (2002). Interpreting first-order theories into a logic of records. Studia Logica, 72, 411–432.

    Article  Google Scholar 

  • Veloso, P. A. S., & Haeberer, A. M. (1991). A Finitary Relational Algebra for Classical First-order Logic. Bulletin of the Section of Logic, 20(2), 52–62.

    Google Scholar 

  • Veloso, P. A. S., & Haeberer, A. M. (1991). A new algebra of first-order logic. In Methodology and philosophy of science. Proceedings of the 9th international congress on logic, Upsala, Sweden.

Download references

Acknowledgments

Research supported by Hungarian National Foundation for Scientific Research Grant Numbers T030314, T034861, and T035192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildikó Sain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikulás, S., Sain, I. & Simon, A. Complexity of equational theory of relational algebras with standard projection elements. Synthese 192, 2159–2182 (2015). https://doi.org/10.1007/s11229-015-0689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-015-0689-1

Keywords

Navigation