, Volume 192, Issue 8, pp 2599–2615 | Cite as

Killer collapse: empirically probing the philosophically unsatisfactory region of GRW

  • Charles T. SebensEmail author


GRW theory offers precise laws for the collapse of the wave function. These collapses are characterized by two new constants, \(\lambda \) and \(\sigma \). Recent work has put experimental upper bounds on the collapse rate, \(\lambda \). Lower bounds on \(\lambda \) have been more controversial since GRW begins to take on a many-worlds character for small values of \(\lambda \). Here I examine GRW in this odd region of parameter space where collapse events act as natural disasters that destroy branches of the wave function along with their occupants. Our continued survival provides evidence that we don’t live in a universe like that. I offer a quantitative analysis of how such evidence can be used to assess versions of GRW with small collapse rates in an effort to move towards more principled and experimentally-informed lower bounds for \(\lambda \).


GRW theory Many-worlds interpretation Everettian quantum mechanics Primitive ontology Quantum mechanics Collapse rate 



Thanks to David Albert, David Baker, Gordon Belot, Cian Dorr, J. Dmitri Gallow, Jeremy Lent, David Manley, Laura Ruetsche, Roderich Tumulka, and an anonymous referee. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 0718128.


  1. Adler, S. L. (2007). Lower and upper bounds on CSL parameters from latent image formation and IGM heating. Journal of Physics A: Mathematical and Theoretical, 40(12), 2935.CrossRefGoogle Scholar
  2. Aicardi, F., Borsellino, A., Ghirardi, G. C., & Grassi, R. (1991). Dynamical models for state-vector reduction: Do they ensure that measurements have outcomes? Foundations of Physics Letters, 4(2), 109–128.CrossRefGoogle Scholar
  3. Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. The British Journal for the Philosophy of Science, 59(3), 353–389.CrossRefGoogle Scholar
  4. Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2011). Many worlds and Schrödinger’s first quantum theory. The British Journal for the Philosophy of Science, 62(1), 1–27.CrossRefGoogle Scholar
  5. Arntzenius, F. (2003). Some problems for conditionalization and reflection. The Journal of Philosophy, 100(7), 356–370.CrossRefGoogle Scholar
  6. Bacciagaluppi, G. (2012). The role of decoherence in quantum mechanics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (2012th ed.). Oxford: Blackwell Publishers.Google Scholar
  7. Bassi, A., Deckert, D.-A., & Ferialdi, L. (2010). Breaking quantum linearity: Constraints from human perception and cosmological implications. EPL (Europhysics Letters), 92(5), 50006.CrossRefGoogle Scholar
  8. Bassi, A., Lochan, K., Satin, S., Singh, T. P., & Ulbricht, H. (2013). Models of wave-function collapse, underlying theories, and experimental tests. Reviews of Modern Physics, 85(2), 471.CrossRefGoogle Scholar
  9. Benatti, F., Ghirardi, G. C., & Grassi, R. (1995). Quantum mechanics with spontaneous localization and experiments. In E. Beltrametti & J.-M. Lévy-Leblond (Eds.), Advances in quantum phenomena (pp. 263–279). Berlin: Springer.CrossRefGoogle Scholar
  10. Carroll, S. M., & Sebens, C. T. (2014). Many worlds, the born rule, and self-locating uncertainty. In D. Struppa & J. Tollaksen (Eds.), Quantum theory: A two-time success story: Yakir Aharonov Festschrift. Berlin: Springer.Google Scholar
  11. Feldmann, W., & Tumulka, R. (2012). Parameter diagrams of the GRW and CSL theories of wavefunction collapse. Journal of Physics A: Mathematical and Theoretical, 45(6), 065304.CrossRefGoogle Scholar
  12. Ghirardi, G., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34(2), 470.CrossRefGoogle Scholar
  13. Gisin, N., & Percival, I. C. (1993). The quantum state diffusion picture of physical processes. Journal of Physics A: Mathematical and General, 26(9), 2245.CrossRefGoogle Scholar
  14. Greaves, H. (2007). On the everettian epistemic problem. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 38(1), 120–152.CrossRefGoogle Scholar
  15. Leslie, J. (1989). Universes. New York: Routledge.Google Scholar
  16. Lewis, D. (2004). How many lives has Schrödinger’s cat? Australasian Journal of Philosophy, 82(1), 3–22.CrossRefGoogle Scholar
  17. Manley, D. (2014). On being a random sample. Manuscript Google Scholar
  18. Maudlin, T. (2010). Can the world be only wavefunction? In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds?: Everett, quantum theory, & reality (pp. 121–143). Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Meacham, C. J. G. (2010). Unravelling the tangled web: Continuity, internalism, uniqueness and self-locating belief. In T. Gendler & J. Hawthorne (Eds.), Oxford studies in epistemology. Oxford: Oxford University.Google Scholar
  20. Pearle, P., & Squires, E. (1994). Bound state excitation, nucleon decay experiments and models of wave function collapse. Physical Review Letters, 73, 1–5.CrossRefGoogle Scholar
  21. Schlosshauer, M. (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4), 1267.CrossRefGoogle Scholar
  22. Sebens, C. T., & Carroll, S. M. (2014). Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. arXiv:1405.7577 [quant-ph].
  23. Swinburne, R. (1990). The argument from the fine tuning of the universe. In J. Leslie (Ed.), Physical cosmology and philosophy. New York: MacMillan.Google Scholar
  24. Tegmark, M. (1993). Apparent wave function collapse caused by scattering. Foundations of Physics Letters, 6(6), 571–590.CrossRefGoogle Scholar
  25. Vaidman, L. (2014a). Many-worlds interpretation of quantum mechanics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (2014th ed.). Berlin: Springer.Google Scholar
  26. Vaidman, L. (2014b). Quantum theory and determinism. Quantum Studies: Mathematics and Foundations, 1(1–2), 5–38.Google Scholar
  27. Wallace, D. (2012). The emergent multiverse: Quantum theory according to the everett interpretation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  28. Wallace, D. (2014). Life and death in the tails of the GRW wave function. arXiv:1407.4746 [quant-ph].
  29. Zurek, W. H. (2003). Decoherence and the transition from quantum to classical–Revisited. quant-ph/0306072.

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of MichiganAnn ArborUSA

Personalised recommendations