, Volume 194, Issue 4, pp 1089–1114 | Cite as

What makes biological organisation teleological?

  • Matteo MossioEmail author
  • Leonardo Bich


This paper argues that biological organisation can be legitimately conceived of as an intrinsically teleological causal regime. The core of the argument consists in establishing a connection between organisation and teleology through the concept of self-determination: biological organisation determines itself in the sense that the effects of its activity contribute to determine its own conditions of existence. We suggest that not any kind of circular regime realises self-determination, which should be specifically understood as self-constraint: in biological systems, in particular, self-constraint takes the form of closure, i.e. a network of mutually dependent constitutive constraints. We then explore the occurrence of intrinsic teleology in the biological domain and beyond. On the one hand, the organisational account might possibly concede that supra-organismal biological systems (as symbioses or ecosystems) could realise closure, and hence be teleological. On the other hand, the realisation of closure beyond the biological realm appears to be highly unlikely. In turn, the occurrence of simpler forms of self-determination remains a controversial issue, in particular with respect to the case of self-organising dissipative systems.


Teleology Organisation Self-determination Closure Circularity 



This work was funded by Ministerio de Ciencia y Innovación, Spain (‘Juan de la Cierva’ program to LB); Research Project of the Spanish Government (FFI2011-25665 to LB) and by the Basque Government (IT 590-13, postdoctoral fellowship to LB).


  1. Anderson, P. W. (1985). Broken symmetry, emergent properties, dissipative structures, life: Are they related? In F. E. Yakes (Ed.), Self-organizing systems: The emergence of order (pp. 445–458). New York: Plenum Press.Google Scholar
  2. Arnellos, A., & Moreno, A. (2012). How functional differentiation originated in prebiotic evolution. Ludus Vitalis, XX, 37, 1–23.Google Scholar
  3. Ashby, R. (1956). An introduction to cybernetics. London: Chapman & Hall.CrossRefGoogle Scholar
  4. Atkins, P. W. (1984). The second law. New York: Scientific American.Google Scholar
  5. Ayala, F. J. (1970). Teleological explanations in evolutionary biology. Philosophy of Science, 30(1), 1–15.CrossRefGoogle Scholar
  6. Bailly, F., & Longo, G. (2011). Mathematics and the natural sciences. The physical singularity of life. London: Imperial College Press.CrossRefGoogle Scholar
  7. Barandiaran, X., & Moreno, A. (2008). Adaptivity: From metabolism to behavior. Adaptive Behavior, 16, 325–344.Google Scholar
  8. Bechtel, W. (2007). Biological mechanisms: Organized to maintain autonomy. In F. Boogerd, F. Bruggerman, J. H. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: Philosophical foundations (pp. 269–302). Amsterdam: Elsevier.CrossRefGoogle Scholar
  9. Bedau, M. (1991). Can biological teleology be naturalized? The Journal of Philosophy, 88(11), 647–655.CrossRefGoogle Scholar
  10. Bedau, M. (1992). Goal-directed systems and the good. The Monist, 75(1), 34–51.CrossRefGoogle Scholar
  11. Bernard, C. (1865). Introduction à l’étude de la médecine expérimentale. Paris: Baillière.Google Scholar
  12. Bernard, C. (1878). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: Baillière.CrossRefGoogle Scholar
  13. Bich, L. (2012a). L’ordine invisibile. Organizzazione, autonomia e complessità del vivente. Soveria Mannelli: Robbettino Università.Google Scholar
  14. Bich, L. (2012b). Complex emergence and the living organization. An epistemological framework for biology. Synthese, 185(2), 215–232.CrossRefGoogle Scholar
  15. Bich, L., & Arnellos, A. (2013). Autopoiesis, autonomy and organizational biology: Critical remarks on “Life After Ashby”. Cybernetics and Human Knowing, 19(4), 75–103.Google Scholar
  16. Bickhard, M. H. (2000). Autonomy, function, and representation. Communication and Cognition—Artificial Intelligence, 17(3–4), 111–131.Google Scholar
  17. Bishop, R. (2008). Downward causation in fluid convection. Synthese, 160(2), 229–248.CrossRefGoogle Scholar
  18. Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological Reviews, 9(3), 399–431.Google Scholar
  19. Christensen, W., & Bickhard, M. (2002). The process dynamics of normative function. The Monist, 85(1), 3–28.CrossRefGoogle Scholar
  20. Christensen, W. D., & Hooker, C. A. (2000). Autonomy and the emergence of intelligence: Organised interactive construction. Communication and Cognition—Artificial Intelligence, 17(3–4), 133–157.Google Scholar
  21. Cornish-Bowden, A. (2006). Putting the systems back into systems biology. Perspectives in Biology and Medicine, 49, 475–489.CrossRefGoogle Scholar
  22. Crutchfield, J. P. (1994). The calculi of emergence: Computations. Dynamics, and Induction, Physica D, 75, 11–54.Google Scholar
  23. Damiano, L. (2012). Co-emergences in life and science: A double proposal for biological emergentism. Synthese, 185(2), 273–294.CrossRefGoogle Scholar
  24. Darwin, C. (1859). On the origin of species. London: John Murray.Google Scholar
  25. Fox Keller, E. (2000). The century of the gene. Cambridge MA: Harvard University Press.Google Scholar
  26. Fox Keller, E. (2002). Making sense of life. Cambridge MA: Harvard University Press.Google Scholar
  27. Godfrey-Smith, P. (1994). A modern history theory of functions. Nous, 28, 344–362.CrossRefGoogle Scholar
  28. Hall, T. S. (1968). Ideas of life and matter (Vol. 2). Chicago: Chicago University Press.Google Scholar
  29. Huneman, P. (Ed.). (2007). Understanding purpose?: Kant and the philosophy of biology. Rochester, NY: University of Rochester Press.Google Scholar
  30. Jacob, F. (1970). La logique du vivant. Une historie de l’hérédité. Paris: Gallimard (Eng. Trans. by B. E. Spillmann, The Logic of Life, New York: Pantheon Books, 1973).Google Scholar
  31. Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.CrossRefGoogle Scholar
  32. Jonas, H. (1953). A critique of cybernetics. Social Research, 20, 172–192.Google Scholar
  33. Jonas, H. (1966). The Phenomenon of Life. Towards a Philosophical Biology. New York: Harper and Row.Google Scholar
  34. Juarrero, A. (1999). Dynamics in Action. Intentional Behaviour as a Complex System. Cambridge MA: MIT Press.Google Scholar
  35. Kant, I. (1781/1998). Critique of pure reason. Cambridge: Cambridge University Press.Google Scholar
  36. Kant, I. (1790/1987). Critique of Judgment. Indianapolis: Hackett Publishing.Google Scholar
  37. Kauffman, S. (2000). Investigations. New York: Oxford University Press.Google Scholar
  38. Kitcher, P. (1993). Function and Design. Midwest Studies in Philosophy, 18(1), 379–397.CrossRefGoogle Scholar
  39. Lenoir, T. (1981). Teleology without regrets. The transformation of physiology in Germany 1790–1847. Studies in the History and Philosophy of Science, 12, 293–354.CrossRefGoogle Scholar
  40. Lenoir, T. (1982). The strategy of life. Teleology and mechanics in nineteenth century german biology. Chicago: The University of Chicago Press.Google Scholar
  41. Lewontin, R. C. (1991). Biology as Ideology. The Doctrine of DNA. Concord: House of Anansi Press.Google Scholar
  42. Lewontin, R. C. (2000). The triple helix. Gene, organism, environment. Cambridge MA: Harvard University Press.Google Scholar
  43. Longo, G., & Tendero, P. E. (2008). L’alphabet, la machine et l’ADN: l’incomplétude causale dela théorie de la programmacion en biologie moléculaire. In P. A. Miquel (Ed.), Biologie du XXIe Siècle:Évolution des Concepts Fondateurs (pp. 185–218). Paris: DeBoeck.Google Scholar
  44. Maturana, H. & Varela, F. J. (1973), De Máquinas y Seres Vivos: Una teoría sobre la organización biológica, Santiago: Editorial Universitaria. In H. Maturana, & F. J. Varela (Eds.), 1980, Autopoiesis and Cognition. The Realization of the Living. Dordrecht: North Holland.Google Scholar
  45. Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.CrossRefGoogle Scholar
  46. Mayr, E. (1974). Teleological and teleonomic, a new analysis. Boston Studies in the Philosophy of Science, 14, 91–117.CrossRefGoogle Scholar
  47. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.CrossRefGoogle Scholar
  48. Minati, G., & Pessa, E. (2006). Collective beings. New York: Springer.Google Scholar
  49. Monod, J. (1970). Les hasard et la necessité. Paris: Seuil.Google Scholar
  50. Morange, M. (1994). Histoire de la biologie moléculaire. Paris: Editions La Découverte (Eng. Trans. by M. Cobb, A History of Molecular Biology, Cambridge MA. Harvard University Press, 1998).Google Scholar
  51. Moreno, A., & Ruiz-Mirazo, K. (1999). Metabolism and the problem of its universalization. BioSystems, 49(1), 45–61.Google Scholar
  52. Moreno, A., & Ruiz-Mirazo, K. (2009). The problem of the emergence of functional diversity in prebiotic evolution. Biology and Philosophy, 24(5), 585–605.CrossRefGoogle Scholar
  53. Moreno, A., & Mossio, M. (in press). Biological autonomy: A philosophical and theoretical enquiry. Dordrecht: Springer.Google Scholar
  54. Moreno, A., Etxeberria, A., & Umerez, J. (2008). The autonomy of biological individuals and artificial models. Biosystems, 91(2), 309–319.CrossRefGoogle Scholar
  55. Mossio, M., Bich, L., & Moreno, A. (2013). Emergence, closure and inter-level causation in biological systems. Erkenntnis, 78(2), 153–178.Google Scholar
  56. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. British Journal of Philosophy of Science, 60(4), 813–841.CrossRefGoogle Scholar
  57. Neander, K. (1991). Functions as selected effects: The conceptual analyst’s defence. Philosophy of Science, 58, 168–184.CrossRefGoogle Scholar
  58. Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.Google Scholar
  59. Nunes-Neto, N., Moreno, A., & El Hani, C. N. (2014). Function in ecology: An organizational approach. Biology and Philosophy, 29(1), 123–141.CrossRefGoogle Scholar
  60. Pattee, H. H. (1973). The physical basis and origin of hierarchical control. In H. H. Pattee (Ed.), Hierarchy theory (pp. 71–108). New York: Braziller.Google Scholar
  61. Perlman, M. (2004). The modern philosophical resurrection of teleology. The Monist, 87(1), 3–51.CrossRefGoogle Scholar
  62. Piaget, J. (1967). Biologie et connaissance. Paris: Gallimard.Google Scholar
  63. Prigogine, I., & Stengers, I. (1988). Entre le temps et l’éternité. Paris: Libraire Arthème Fayard.Google Scholar
  64. Rosen, R. (1970). Dynamical system theory in biology. Stability theory and its applications. New York: Wiley-Interscience.Google Scholar
  65. Rosen, R. (1972). Some relational cell models: The metabolism-repair systems. In R. Rosen (Ed.), Foundations of mathematical biology (Vol. II, pp. 217–253). New York: Academic Press.CrossRefGoogle Scholar
  66. Rosen, R. (1985a). Organisms as causal systems which are not mechanisms: An essay into the nature of complexity. In R. Rosen (Ed.), Theoretical biology and complexity. Three essays on the natural philosophy of complex systems. Orlando: Academic Press.Google Scholar
  67. Rosen, R. (1985b). Anticipatory systems. Oxford: Pergamon Press.Google Scholar
  68. Rosen, R. (1991). ife itself. A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.Google Scholar
  69. Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behaviour, purpose and teleology. Philosophy of Science, 10(1), 18–24.CrossRefGoogle Scholar
  70. Ruiz-Mirazo, K. (2001). Physical conditions for the appearance of autonomous systems with open-ended evolutionary capacities. PhD Dissertation, University of the Basque Country.Google Scholar
  71. Ruse, M. (2000). Teleology: Yesterday, today, and tomorrow? Studies in History and Philosophy of Biological and Biomedical Sciences, 31(1), 213–232.CrossRefGoogle Scholar
  72. Saborido, C., Mossio, M., & Moreno, A. (2011). Biological organization and cross-generation functions. The British Journal for the Philosophy of Science, 62, 583–606.CrossRefGoogle Scholar
  73. Sloan, P. (2012). How was teleology eliminated in early molecular biology? Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 140–151.CrossRefGoogle Scholar
  74. Sommerhoff, G. (1950). Analytical biology. London: Oxford University Press.Google Scholar
  75. Toepfer, G. (2012). Teleology and its constitutive role for biology as the science of organized systems in nature. Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 113–119.CrossRefGoogle Scholar
  76. Umerez, J. (1994). Jerarquias Autónomas - Un estudio sobre el origen y la naturaleza de loas procesos de control y de formacion de niveles en eistemas naturales complejos. Ph.D. Dissertation, University of the Basque Country.Google Scholar
  77. Varela, F., & Maturana, H. (1972). Mechanism and biological explanation. Philosophy of Science, 39(3), 378–382.CrossRefGoogle Scholar
  78. von Bertalanffy L. (1949). Das Biologische Weltbild: Die Stellung des Lebens in Natur und Wissenshaft. Bern: Francke (eng. ed., 1952, Problems of Life: An Evaluation of Modern Biological Thought. London: Watts & Co).Google Scholar
  79. Weber, A., & Varela, F. J. (2002). Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences, 1(2), 97–125.CrossRefGoogle Scholar
  80. Waddington, C. H. (1962). The nature of life. New York: Atheneum.Google Scholar
  81. Waddington, C. H. (1968). The basic ideas of biology. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. 1, pp. 1–41)., Prolegomena New York: Atheneum.Google Scholar
  82. Weiss, P. (1968). Dynamics of development. Experiments and inferences. New York: Academic Press.Google Scholar
  83. Wiener, N. (1948). Cybernetics: Or control and communication in the animal and in the machine. Cambridge MA: MIT Press.Google Scholar
  84. Wright, L. (1973). Functions. Philosophical Review, 82, 139–168.CrossRefGoogle Scholar
  85. Zammito, J. (2006). Teleology then and now: the question of Kant’s relevance for contemporary controversies over function in biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 37(4), 748–770.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut d’Histoire et Philosophie des Sciences et des Techniques (IHPST)CNRS/Université Paris 1/ENSParisFrance
  2. 2.IAS-Research Centre for Life, Mind and Society, Department of Logic and Philosophy of ScienceUniversity of the Basque CountryDonostia-San SebastiánSpain

Personalised recommendations