Aerts, D., & Daubechies, I. (1979). A characterization of subsystems in physics. Letters in Mathematical Physics, 3, 11–17.
Aerts, D., & Daubechies, I. (1979). A mathematical condition for a sublattice of a propositional system to represent a physical subsystem, with a physical interpretation. Letters in Mathematical Physics, 3, 19–27.
Article
Google Scholar
Arenhart, J. (2013a). Wither away individuals. Synthese, 190(16), 3475–3494.
Article
Google Scholar
Arenhart, J. (2013b). Weak discernibility in quantum mechanics: Does it save PII? Axiomathes, 23(3), 461–484.
Article
Google Scholar
Arenhart, J., & Krause, D. (2014). From primitive identity to the non-individuality of quantum objects. Studies in History and Philosophy of Modern Physics, 46(Part B), 273–282.
Article
Google Scholar
Ballentine, L. (1998). Quantum mechanics: A modern development. Hackensack: World Scientific Publishing Co., Pte. Ltd.
Book
Google Scholar
Beltrametti, E. G., & Cassinelli, G. (1981). The logic of quantum mechanics. Reading: Addison-Wesley.
Google Scholar
Bigaj, T. (2013). On discernibility and symmetries. Erkenntnis, 1–19. doi:10.1007/s10670-014-9616-y.
Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.
Article
Google Scholar
Borghini, A., & Lando, G. (2011). Natural properties, supervenience, and mereology. Humana. Mente Journal of Philosophical Studies, 19, 79–104.
Google Scholar
Bratteli, O., & Robinson, D. W. (1997). Operator algebras and quantum statistical mechanics (Vol. 2). Berlin: Springer.
Book
Google Scholar
Brignole, D., & da Costa, N. C. A. (1971). On supernormal Ehresmann-Dedecker universes. Mathematische Zeitschrift, 122(4), 342–350.
Article
Google Scholar
Butterfield, J. (1993). Interpretation and identity in quantum theory. Studies in History and Philosophy of Science, 24, 443–476.
Article
Google Scholar
Caulton, A., & Butterfield, J. (2012a). On Kinds of Indiscernibility in logic and metaphysics. British Journal for the Philosophy of Science, 63(1), 27–84.
Article
Google Scholar
Caulton, A., & Butterfield, J. (2012b). Symmetries and paraparticles as a motivation for structuralism. British Journal for the Philosophy of Science, 63(2), 233–285.
Article
Google Scholar
Caulton, A. (2013). Discerning ‘Indistinguishable’ quantum systems. Philosophy of Science, 80, 49–72.
Article
Google Scholar
Clifton, R., & Halvorson, H. (2001). Are Rindler quanta real? Inequivalent particle concepts in quantum field theory. British Journal for the Philosophy of Science, 52, 417–470.
Article
Google Scholar
da Costa, N. C. A. (1980). Ensaio sobre os Fundamentos da Lógica. São Paulo: HUCITEC.
Google Scholar
da Costa, N. C. A., & Bueno, Y. O. (2009). Non reflexive logics. Revista Brasileira de Filosofia, 58, 181–208.
Google Scholar
Dalla Chiara, M. L., & Toraldo di Francia, G. (1995). Identity questions from quantum theory. In K. Gavroglu, et al. (Eds.), Physics, philosophy and the scientific community (pp. 39–46). Dordrecht: Kluwer Academic Publishers.
Chapter
Google Scholar
Dalla Chiara, M. L., Giuntini, R., & Krause, D. (1998). Quasiset theories for microobjects: A comparision. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics (pp. 142–152). Princeton: Princeton University Press.
Google Scholar
Dalla Chiara, M. L., Giuntini, R., & Greechie, R. (2004). Reasoning in quantum theory. Dordrecht: Kluwer Acad. Pub.
Book
Google Scholar
Darby, G., & Watson, D. (2010). Lewis’s principle of recombination: Reply to Efird and Stoneham. Dialectica, 64(3), 435–445.
Article
Google Scholar
de la Harpe, P., Jones, V. (1995). An introduction to C\(^{\ast }\)-algebras.
Dieks, D. (2010). Are ‘Identical Quantum Particles’ weakly discernible objects? In M. Suárez, M. Dorato, & M. Rédei (Eds.), EPSA philosophical issues in the sciences (pp. 21–30). Berlin: Springer.
Chapter
Google Scholar
Dirac, P. A. M. (1927). The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society of London Series A, 114, 243–265.
Article
Google Scholar
Domenech, G., Holik, F., de Ronde, C. (2008). Entities, Identity and the formal structure of quantum mechanics. arXiv:1203.3007v1.
Domenech, G., & Holik, F. (2007). A discussion on particle number and quantum indistinguishability. Foundations of Physics, 37, 855–878.
Article
Google Scholar
Domenech, G., Holik, F., & Krause, D. (2008). Q-spaces and the foundations of quantum mechanics. Foundations of Physics, 38, 969–994.
Article
Google Scholar
Domenech, G., Holik, F., Kniznik, L., & Krause, D. (2009). No labeling quantum mechanics of indiscernible particles. International Journal of Theoretical Physics, 49, 3085–3091.
Article
Google Scholar
Domenech, G., Holik, F., & Massri, C. (2010). A quantum logical and geometrical approach to the study of improper mixtures. Journal of Mathematical Physics, 51, 052108.
Article
Google Scholar
Duncan, A., & Janssen, M. (2008). Pascual Jordan’s resolution of the conundrum of the wave-particle duality of light. Studies in History and Philosophy of Science Part B, 39, 3.
Article
Google Scholar
Dvurečenskij, A., & Pulmannová, S. (2000). New trends in quantum structures. Dordrecht: Kluwer Acad. Pub.
Book
Google Scholar
Engesser, K., Gabbay, D. M., & Lehmann, D. (Eds.). (2009). Handbook Of quantum logic and quantum structures (quantum logic). North-Holland: Elsevier.
Google Scholar
French, S., & Redhead, M. (1988). Quantum physics and the identity of indiscernibles. British Journal for the Philosophy of Science, 39, 233–246.
Article
Google Scholar
French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical, and formal analysis. Oxford: Oxford University Press.
Book
Google Scholar
Giuntini, R. (1991). Quantum logic and hidden variables. Mannheim: BI Wissenschaftsverlag.
Google Scholar
Greechie, J. R. (1981). Current issues in quantum logic. In E. Beltrameti & B. van Fraassen (Eds.), A non-standard quantum logic with a strong set of states (pp. 375–380). New York: Plenum.
Google Scholar
Gudder, S. P. (1978). In A. R. Marlow (Ed.) Mathematical foundations of quantum theory. Academic Press, New York.
Halmos, P. (1963). Naive set theory. New York: D. Van Nostrand Company.
Google Scholar
Hawley, K. (2006). Weak discernibility. Analysis, 66(4), 300–303.
Article
Google Scholar
Hawley, K. (2009). Identity and Indiscernibility. Mind, 118(469), 101–119.
Article
Google Scholar
Holik, F. (2006). Aportes hacia una incorporación de la teoría de cuasiconjuntos en el formalismo de la mecánica cuántica. Master Thesis at the University of Buenos Aires.
Holik, F. (2010). Compound quantum systems: An algebraic approach. PhD. Thesis at the University of Buenos Aires.
Holik, F. (2011). Neither name, nor number. In Probing the meaning of quantum mechanics: Physical, philosophical, and logical perspectives. World Scientific. arXiv:1112.4622v1.
Holik, F., Massri, C., & Ciancaglini, N. (2012). Convex quantum logic. International Journal of Theoretical Physics, 51, 1600–1620.
Article
Google Scholar
Huggett, N. (2000). Philosophical foundations of quantum field theory. The British Journal for the Philosophy of Science, 51, 617–637.
Article
Google Scholar
Jauch, J. M. (1968). Foundations of quantum mechanics. Cambridge: Addison-Wesley.
Google Scholar
Kalmbach, G. (1983). Orthomodular lattices. San Diego: Academic Press.
Google Scholar
Kalmbach, G. (1986). Measures and Hilbert lattices. Singapore: World Scientific.
Book
Google Scholar
Krause, D. (2003). Why quasi-sets? Boletim da Sociedade Paranaense de Matematica, 20, 73–92.
Google Scholar
Kunen, K. (1980). Set theory, an introduction to indpendence proofs. Amsterdam: North-Holland.
Google Scholar
Ladyman, J., & Bigaj, T. (2010). The principle of the identity of indiscernibles and quantum mechanics. Philosophy of Science, 77, 117–136.
Article
Google Scholar
Ladyman, J., Linnebo, Ø., & Pettigrew, R. (2012). Identity and discernibility in philosophy and logic. The Review Of Symbolic Logic, 5(1), 162–186.
Article
Google Scholar
Mackey, G. W. (1957). Quantum mechanics and Hilbert space. American Mathematical Monthly, Supplement 64, 45–57.
Manin Y. I. (1976). Problems of present day mathematics I: Foundations. In F. E. Browder (Ed.), Mathematical Problems Arising From Hilbert Problems, Proceedings of Symposia in Pure Mathematics XXVIII (p. 36), Providence: American Mathematical Society.
Manin, Y. I. (1977). A course in mathematical logic. Berlin: Springer.
Book
Google Scholar
Manin, Y. (2010). A course in mathematical logic for mathematicians. New York: Springer.
Book
Google Scholar
Mittelstaedt, P. (1998). The interpretation of quantum mechanics and the measurement process. Cambridge: Cambridge University Press.
Google Scholar
Morganti, M. (2009). A new look at relational holism in quantum mechanics. Philosophy of Science, 76, 1027–1038.
Google Scholar
Muller, F.A. (2014). “The Rise of Relationals”, to appear. In: Mind.
Muller, F. A., & Saunders, S. (2008). Discerning Fermions. British Journal for the Philosophy of Science, 59, 499–548.
Article
Google Scholar
Muller, F. A., & Seevinck, M. P. (2009). Discerning elementary particles. Philosophy of Science, 76, 179–200.
Article
Google Scholar
Pavičić, M., Megill, D. (2008). Is quantum logic a logic?. In K. Engesser, D. Gabbay, and D. Lehmann (Eds.) Handbook of quantum logic and quantum structures, Vol. Quantum logic (pp. 23–47). Amsterdam: Elsevier.
Piron, C. (1976). Foundations of quantum physics. Cambridge: Addison-Wesley.
Google Scholar
Post, H. (1963) Individuality and physics. The listener, 70, 534–537; reprinted in Vedanta for East and West 32, (1963), 14–22, cited in [2].
Pták, P., & Pulmannova, S. (1991). Orthomodular structures as quantum logics. Dordrecht: Kluwer Academic Publishers.
Google Scholar
Putnam, H. (1968). Is Logic Empirical? Boston studies in the philosophy of science, vol. 5. In Robert S. Cohen, Marx W. Wartofsky (Eds.) (Dordrecht: D. Reidel, 1968) (pp. 216–241). .
Quine, W. V. O. (1953). From a logical point of view, chapter V. Cambridge: Harvard University Press.
Google Scholar
Randall, C. H., & Foulis, D. J. (1981). Interpretation and foundations of quantum theory. In H. Neumann (Ed.), (pp. 21–28). Bibliographisches Institut, Mannheim.
Redhead, M., & Teller, P. (1991). Particles, particle labels, and quanta: the toll of unacknowledged metaphysics. Foundations of Physics, 21, 43–62.
Article
Google Scholar
Redhead, M., & Teller, P. (1992). Particle labels and the theory of indistinguishable particles in quantum mechanics. British Journal for the Philosophy of Science, 43, 201–218.
Article
Google Scholar
Robertson, B. (1973). Introduction to field operators in quantum mechanics. American Journal of Physics, 41, 678.
Article
Google Scholar
Rosser, J. B. (1953). Logic for mathematicians. New York: McGraw-Hill.
Google Scholar
Santorelli, A., Krause, D., & Sant’Anna, A. (2005). A critical study on the concept of identity in Zermelo–Fraenkel like axioms and its relationship with quantum statistics. Logique & Analyse, 189–192, 231–260.
Google Scholar
Saunders, S. (2003). Physics and Leibniz’s principles. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections (pp. 289–307). Cambridge: Cambridge University Press.
Chapter
Google Scholar
Saunders, S. (2006). Are quantum particles objects? Analysis, 66, 52–63.
Article
Google Scholar
Schrödinger, E. (1998) What is an elementary particle?. In E. Castellani (Ed.), Interpreting bodies: classical and quantum objects in modern physics (pp. 197–210). Princeton: Princeton Un. Press.
Schroer, B. (2003). Pascual Jordan, his contributions to quantum mechanics and his legacy in contemporary local quantum physics (CBPF-NF–018/03). Brazil
Simons, P. (1987). Parts: A study in ontology. Clarendon Press-Oxford: Oxford University Press.
Google Scholar
Takeuti, G. (1981). Quantum set theory. In E. Beltrametti, B. C. van Frassen (Eds.), Current issues in quantum logic (pp. 302–322). Plenum, New York.
Teller, P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science, 37, 71–81.
Google Scholar
Teller, P. (1989). Relativity, relational holism and the bell inequalities. In J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory (pp. 208–223). Notre Dame: University of Notre Dame Press.
Google Scholar
Titani, S., & Kozawa, H. (2003). Quantum Set Theory. International Journal of Theoretical Physics, 42, 2575–2602.
Article
Google Scholar
van Fraassen, B. C., & Peschard, I. (2008). Identity over time: Objectively and subjectively. Philosophical Quarterly, 58, 15–35.
Google Scholar
Varadarajan, V. (1968). Geometry of quantum theory I. Princeton: van Nostrand.
Book
Google Scholar
Varadarajan, V. (1970). Geometry of quantum theory II. Princeton: van Nostrand.
Google Scholar