Advertisement

Synthese

, Volume 195, Issue 2, pp 491–510 | Cite as

Rational analysis, intractability, and the prospects of ‘as if’-explanations

  • Iris van RooijEmail author
  • Cory D. Wright
  • Johan Kwisthout
  • Todd Wareham
Article

Abstract

The plausibility of so-called ‘rational explanations’ in cognitive science is often contested on the grounds of computational intractability. Some have argued that intractability is a pseudoproblem, however, because cognizers do not actually perform the rational calculations posited by rational models; rather, they only behave as if they do. Whether or not the problem of intractability is dissolved by this gambit critically depends, inter alia, on the semantics of the ‘as if’ connective. First, this paper examines the five most sensible explications in the literature, and concludes that none of them actually circumvents the problem. Hence, rational ‘as if’ explanations must obey the minimal computational constraint of tractability. Second, this paper describes how rational explanations could satisfy the tractability constraint. Our approach suggests a computationally unproblematic interpretation of ‘as if’ that is compatible with the original conception of rational analysis.

Keywords

Psychological explanation Rational analysis Computational-level theory Intractability NP-hard Approximation 

References

  1. Aaronson, S. (2005). NP-complete problems and physical reality. SIGACT News, 36, 30–52.Google Scholar
  2. Aaronson, S. (2008). The limits of quantum computers. Scientific American, 298, 62–69.CrossRefGoogle Scholar
  3. Abdelbar, A. M., & Hedetniemi, S. M. (1998). Approximating MAPs for belief networks is NP-hard and other theorems. Artificial Intelligence, 102, 21–38.CrossRefGoogle Scholar
  4. Anderson, J. R., & Matessa, M. (1990). A rational analysis of categorization. In B. Porter & R. Mooney (Eds.), Proceedings of the 7th international workshop on machine learning (pp. 76–84). San Francisco: Morgan Kaufmann.Google Scholar
  5. Anderson, J. R. (1990). The adaptive character of thought. Hillsdale: Lawrence Erlbaum Associates Inc.Google Scholar
  6. Anderson, J. R. (1991a). The adaptive nature of human categorization. Psychological Review, 98, 409–429.CrossRefGoogle Scholar
  7. Anderson, J. R. (1991b). Is human cognition adaptive? Behavioral and Brain Sciences, 14, 471–517.Google Scholar
  8. Anderson, J. R. (1991c). The place of cognitive architectures in a rational analysis. In K. Van Lehn (Ed.), Architectures for intelligence (pp. 1–24). Hillsdale: Erlbaum.Google Scholar
  9. Arora, S. (1998). The approximability of NP-hard problems. Proceedings of the 30th annual symposium on the theory of computing (pp. 337–348). New York: ACM Press.Google Scholar
  10. Blokpoel, M., Kwisthout, J., van der Weide, T. P., Wareham, T., & van Rooij, I. (2013). A computational-level explanation of the speed of goal inference. Journal of Mathematical Psychology, 57, 117–133.Google Scholar
  11. Bournez, O., & Campagnolo, M. L. (2008). A survey of continuous-time computation. In S. B. Cooper, B. Löwe, & A. Sorbi (Eds.), New computational paradigms: Changing conceptions of what is computable (pp. 383–423). Berlin: Springer.CrossRefGoogle Scholar
  12. Chater, N., & Oaksford, M. (1990). Autonomy, implementation, and cognitive architecture: A reply to Fodor and Pylyshyn. Cognition, 34, 93–107.CrossRefGoogle Scholar
  13. Chater, N., & Oaksford, M. (1999). Ten years of the rational analysis of cognition. Trends in Cognitive Sciences, 3, 57–65.Google Scholar
  14. Chater, N., & Oaksford, M. (2000). The rational analysis of mind and behavior. Synthese, 122, 93–131.CrossRefGoogle Scholar
  15. Chater, N., & Oaksford, M. (2001). Human rationality and the psychology of reasoning: Where do we go from here? British Journal of Psychology, 92, 193–216.CrossRefGoogle Scholar
  16. Chater, N., & Oaksford, M. (2008). The probabilistic mind: Prospects for Bayesian cognitive science. Oxford: Oxford University Press.Google Scholar
  17. Chater, N., Oaksford, M., Nakisa, R., & Redington, M. (2003). Fast, frugal, and rational: How rational norms explain behavior. Organizational Behavior and Human Decision Processes, 90, 63–86.CrossRefGoogle Scholar
  18. Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition. Trends in Cognitive Science, 10, 287–293.CrossRefGoogle Scholar
  19. Cooper, G. F. (1990). The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42, 393–405.CrossRefGoogle Scholar
  20. Cotogno, P. (2003). Hypercomputation and the physical Church-Turing Thesis. British Journal of Philosophy of Science, 54, 181–223.CrossRefGoogle Scholar
  21. Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60, 141–153.Google Scholar
  22. Danks, D. (2008). Rational analyses, instrumentalism, and implementations. In N. Chater & M. Oaksford (Eds.), The probabilistic mind: Prospects for rational models of cognition (pp. 59–75). Oxford: Oxford University Press.CrossRefGoogle Scholar
  23. Danks, D. (2013). Moving from levels and reduction to dimensions anand constraints. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the cognitive science society (pp. 2124–2129). Oxford: Oxford University Press.Google Scholar
  24. Davis, M. (2004). The myth of hypercomputation. In C. Tuescher (Ed.), Alan Turing: Life and legacy of a great thinker (pp. 195–211). Berlin: Springer.Google Scholar
  25. Dennett, D. C. (1994). Cognitive science as reverse engineering: several meanings of ‘top down’ and ‘bottom up’. In D. Prawitz, B. Skyrms, & D. Westerstahl (Eds.), Logic, methodology, and philosophy of science IX (pp. 679–689). Amsterdam: Elsevier Science.Google Scholar
  26. Downey, R. G., & Fellows, M. R. (1999). Parameterized complexity. New York: Springer.CrossRefGoogle Scholar
  27. Ellis, N. C. (2006). Language acquisition as rational contingency learning. Applied Linguistics, 27, 1–24.CrossRefGoogle Scholar
  28. Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.CrossRefGoogle Scholar
  29. Fortnow, L. (2009). The status of the P versus NP problem. Communications of the ACM, 52, 78–86.CrossRefGoogle Scholar
  30. Garey, M., & Johnson, D. (1979). Computers and intractability. A guide to the theory of NP-completeness. San Francisco: W. H. Freeman & Co.Google Scholar
  31. Gigerenzer, G. (2004). Fast and frugal heuristics: The tools of bounded rationality. In D. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (pp. 62–88). Malden: Blackwell.CrossRefGoogle Scholar
  32. Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008). A rational analysis of rule-based concept learning. Cognitive Science, 32, 108–154.CrossRefGoogle Scholar
  33. Gray, W. D., Sims, C. R., Fu, W., & Schoelles, M. J. (2006). The soft constraints hypothesis: A rational analysis approach to resource allocation for interactive behavior. Psychological Review, 113, 461–482.CrossRefGoogle Scholar
  34. Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21, 263–268.CrossRefGoogle Scholar
  35. Johnson, D. (1990). A catalog of complexity classes. In J. van Leeuwen (Ed.), Handbook of theoretical computer science; volume A: Algorithms and complexity (pp. 67–161). Cambridge: MIT Press.Google Scholar
  36. Kwisthout, J. (2011). Most probable explanations in Bayesian networks: Complexity and tractability. International Journal of Approximate Reasoning, 52, 1452–1469.CrossRefGoogle Scholar
  37. Kwisthout, J., & van Rooij, I. (2013). Bridging the gap between theory and practice of approximate Bayesian inference. Cognitive Systems Research, 24, 2–8.CrossRefGoogle Scholar
  38. Kwisthout, J., Wareham, T., & van Rooij, I. (2011). Bayesian intractability is not an ailment that approximation can cure. Cognitive Science, 35, 779–784.CrossRefGoogle Scholar
  39. Marr, D. (1982). Vision: A computational investigation into the human representation and processing visual information. San Francisco: W. H. Freeman & Co.Google Scholar
  40. Nayebi, A. (2014). Practical intractability: A critique of the hypercomputation movement. Minds and Machines, 24, 275–305.Google Scholar
  41. Ngo, J. T., Marks, J., & Karplus, M. (1994). Computational complexity, protein structure prediction, and the Levinthal paradox. In K. Merz Jr & S. Le Grand (Eds.), The protein folding problem and tertiary structure prediction (pp. 433–506). Boston: Birkhauser.CrossRefGoogle Scholar
  42. Norris, D. (2006). The Bayesian reader: Explaining word recognition as an optimal Bayesian decision process. Psychological Review, 113, 327–357.CrossRefGoogle Scholar
  43. Oaksford, M., & Chater, N. (1998). Rationality in an uncertain world: Essays on the cognitive science of human reasoning. Sussex: Psychology Press.CrossRefGoogle Scholar
  44. Oaksford, M., & Chater, N. (2009). Précis of Bayesian rationality: The probabilistic approach to human reasoning. Behavioral and Brain Sciences, 32, 69–120.Google Scholar
  45. Piccinini, G. (2011). The physical Church-Turing thesis: Modest or bold? British Journal of Philosophy of Science, 62, 733–769.CrossRefGoogle Scholar
  46. Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117, 1144–1167.Google Scholar
  47. Schöning, U. (1990). Complexity cores and hard problem instances’. In T. Asano, T. Ibaraki, H. Imai, & T. Nishizeki (Eds.), Proceedings of the international symposium on algorithms (SIGAL’90) (pp. 232–240). Berlin: Springer.Google Scholar
  48. Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review, 17, 443–464.CrossRefGoogle Scholar
  49. Shimony, S. E. (1994). Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68, 399–410.CrossRefGoogle Scholar
  50. S̆íma, J., & Orponen, P. (2003). General-purpose computation with neural networks: A survey of complexity-theoretic results. Neural Computation, 15, 2727–2778.CrossRefGoogle Scholar
  51. Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13, 423–469.CrossRefGoogle Scholar
  52. van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939–984.Google Scholar
  53. van Rooij, I., & Wareham, T. (2008). Parameterized complexity in cognitive modeling: Foundations, applications and opportunities. Computer Journal, 51, 385–404.Google Scholar
  54. van Rooij, I., & Wareham, T. (2012). Intractability and approximation of optimization theories of cognition. Journal of Mathematical Psychology, 56, 232–247.CrossRefGoogle Scholar
  55. van Rooij, I., & Wright, C. D. (2006). The incoherence of heuristically explaining coherence. In R. Sun & N. Miyake (Eds.), Proceedings of 28th annual conference of the cognitive science society (p. 2622). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  56. van Rooij, I., Wright, C. D., & Wareham, T. (2012). Intractability and the use of heuristics in psychological explanations. Synthese, 187, 471–487.Google Scholar
  57. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge: Harvard University Press.Google Scholar
  58. Zachos, S. (1986). Probabilistic quantifiers, adversaries, & complexity classes: An overview. In A. L. Selman (Ed.), Structure in complexity theory (pp. 383–400). Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Iris van Rooij
    • 1
    Email author
  • Cory D. Wright
    • 2
  • Johan Kwisthout
    • 1
  • Todd Wareham
    • 3
  1. 1.Donders Institute for Brain, Cognition, and BehaviourRadboud Universiteit NijmegenNijmegenThe Netherlands
  2. 2.Department of PhilosophyCalifornia State University Long BeachLong BeachUSA
  3. 3.Department of Computer ScienceMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations