Can visual cognitive neuroscience learn anything from the philosophy of language? Ambiguity and the topology of neural network models of multistable perception

Abstract

The Necker cube and the productive class of related stimuli involving multiple depth interpretations driven by corner-like line junctions are often taken to be ambiguous. This idea is normally taken to be as little in need of defense as the claim that the Necker cube gives rise to multiple distinct percepts. In the philosophy of language, it is taken to be a substantive question whether a stimulus that affords multiple interpretations is a case of ambiguity. If we take into account what have been identified as hallmark features of ambiguity and look at the empirical record, it appears that the Necker cube and related stimuli are not ambiguous. I argue that this raises problems for extant models of multistable perception in cognitive neuroscience insofar as they are purported to apply to these stimuli. Helpfully, similar considerations also yield reasons to suggest that the relevant models are well motivated for other instances of multistable perception. However, a different breed of model seems to be required for the Necker cube and related stimuli. I end with a sketch how one may go about designing such a model relying on oscillatory patters in neural firing. I suggest that distinctions normally confined to the philosophy of language are important for the study of perception, a perspective with a growing number of adherents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Notes

  1. 1.

    The term “ambiguity” may have other connotations that are not represented in these diagrams, but this is not important for the arguments to follow.

References

  1. Albers, J. (1977). Despite straight lines. Cambridge: MIT Press.

    Google Scholar 

  2. Ashworth, E. J. (1991). Signification and modes of signifying in thirteenth-century logic: A preface to aquinas on analogy. Medieval Philosophy and Theology., 1, 39–67.

    Google Scholar 

  3. Atlas, J. (1989). Philosophy without ambiguity. Oxford: Clarendon Press.

    Google Scholar 

  4. Atlas, J. (2005). Logic, meaning, and conversation. Oxford: Oxford University Press.

  5. Babich, S., & Standing, L. (1981). Satiation effects with reversible figures. Perceptual and Motor Skills, 52, 203–210.

  6. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.

    Article  Google Scholar 

  7. Biederman, I. (2001). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13, 241–253.

    Article  Google Scholar 

  8. Biederman, I., & Ju, G. (1988). Surface vs. edge based determinants of visual recognition. Cognitive Psychology, 20(1), 38–64.

    Article  Google Scholar 

  9. Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228, 477–478.

    Article  Google Scholar 

  10. Blasdel, G., Obermayer, K., & Kiorpes, L. (1995). Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys. Visual Neuroscience, 12, 589–603.

    Article  Google Scholar 

  11. Borisyuk, R., Chik, D., & Kazanovich, Y. (2009). Visual perception of ambiguous figures: Synchronization based neural models. Biological Cybernetics, 100, 491–504.

    Article  Google Scholar 

  12. Borsellino, A., De Marco, A., Allazetta, A., Rinsei, S., & Bartolini, B. (1972). Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik, 10, 139.

  13. Britz, J., Landis, T., & Michels, C. M. (2009). Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cerebral Cortex, 19, 55–65.

    Article  Google Scholar 

  14. Chalmers, D. (2004). How can we construct a science of consciousness? In M. Gazzaniga (Ed.), The cognitive neurosciences III. Cambridge: MIT Press.

    Google Scholar 

  15. Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience, 16(20), 6443–6453.

    Google Scholar 

  16. Cohen, L. (1959). Perception of reversible figures after brain injury. Archives of Neurology and Psychiatry, 81, 765–775.

    Article  Google Scholar 

  17. Corbetta, M., Shulman, G. L., Miezin, F. M., & Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270, 802–805.

    Article  Google Scholar 

  18. Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566–570.

    Article  Google Scholar 

  19. Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8, 97–107.

    Article  Google Scholar 

  20. Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6(2), 119–126.

    Article  Google Scholar 

  21. Cumming, S., (ms). (1989). The attentional foundations of coherence. Manuscript, UCLA.

  22. Deregowski, J. (1969). Perception of the two-pronged trident by two- and three- dimensional perceivers. Journal of Experimental Psychology, 82, 9–13.

    Article  Google Scholar 

  23. Deregowski, J. (1989). Real space and represented space: Cross-cultural perspectives. Behavioral and Brain Sciences, 12, 51–119.

    Article  Google Scholar 

  24. Deregowski, J., & Bentley, A. M. (1986). Perception of pictorial space by Bushmen. International Journal of Psychology, 21, 743–752.

    Article  Google Scholar 

  25. Deregowski, J., & Dziurawiec, S. (1986). Some aspects of comprehension of technical diagrams: An intercultural study. Le Travail Humain, 49, 43–60.

    Google Scholar 

  26. Enns, J. T., & Rensink, R. A. (1991). Preattentive recovery of three-dimensional orientation from line drawings. Psychological Review, 98(3), 335–351.

    Article  Google Scholar 

  27. Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6, 205–254.

    Article  Google Scholar 

  28. Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–479.

    Article  Google Scholar 

  29. Frost, R., Feldman, L. B., & Katz, L. (1990). Phonological ambiguity and lexical ambiguity: Effects on visual and auditory word recognition. Journal of Experimental Psychology, 16, 569–580.

    Google Scholar 

  30. Gillam, B. (1979). Even possible figures can look impossible. Perception, 8, 229–232.

    Article  Google Scholar 

  31. Greenberg, G. (2011). The Semiotic Spectrum. Doctoral dissertation. Rutgers University.

  32. Grice, H. P. (1975). Logic and conversation. In J. Kimball (Ed.), Syntax and semantics (Vol. 3, pp. 139–151). New York: Academic Press.

    Google Scholar 

  33. Harris, C. M., Hainline, L., Abramov, I., et al. (1988). The distribution of fixation durations in infants and naïve adults. Vision Research, 28, 419–432.

    Article  Google Scholar 

  34. Hayworth, K. J., & Biederman, I. (2006). Neural evidence for intermediate representations in object recognition. Vision Research, 46, 4026–4031.

    Article  Google Scholar 

  35. Hochberg, J. E., & Brooks, V. (1962). Pictorial recognition as an unlearned ability. American Journal of Psychology, 75, 624–628.

    Article  Google Scholar 

  36. Isoglu-Alkac, U., & Strüber, D. (2006). Necker cube reversals during long-term EEG recordings: Sub-bands of alpha activity. International Journal of Psychophysiology, 59(2), 179–189.

    Article  Google Scholar 

  37. Kayaert, G., Biederman, I., Op de Beeck, H., & Vogels, R. (2005). Tuning for shape dimensions in macaque inferior temporal cortex. European Journal of Neuroscience, 22, 212–224.

    Article  Google Scholar 

  38. Kayaert, G., Biederman, I., & Vogels, R. (2003). Shape tuning in macaque inferior temporal cortex. Journal of Neuroscience, 23, 3016–3027.

    Google Scholar 

  39. Kanwisher, N., Stanley, D., & Harris, A. (1999). The fusiform face area is selective for faces not animals. NeuroReport, 10, 183–187.

    Article  Google Scholar 

  40. Kawabata, N. (1987). Interpretive process of depth in line drawing. Systems and computers in Japan, 18(7), 103–109.

    Article  Google Scholar 

  41. Kawabata, N., & Yamagami, K. (1978). Visual fixation points and depth perception. Vision Research, 18, 853–854.

    Article  Google Scholar 

  42. Klink, P. C., van Ee, R., Nijs, M. M., Bruwer, G. J., Noest, A. J., & van Wezel, R. J. A. (2008). Early interactions between neuronal adaptation and voluntary control of perceptual choices in bistable vision. Journal of Vision, 8(5), 1–18.

    Article  Google Scholar 

  43. Koralus, P. (2010). Semantics in Philosophy and Cognitive Neuroscience. PhD Dissertation. Princeton University.

  44. Koralus, P. (2013). Attention, Consciousness, and the semantics of questions. Synthese, doi:10.1007/s11229-013-0382-1.

  45. Koralus, P. (2014). The erotetic theory of attention: Questions, focus, and distraction. Mind and Language, 29(1), 26–50.

    Article  Google Scholar 

  46. Kurtzi, Z., & Kanwisher, N. (2000). Cortical regions involved in processing object shape. Journal of Neuroscience, 20(9), 3310–3318.

    Google Scholar 

  47. Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3, 254–264.

    Article  Google Scholar 

  48. Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychological Bulletin, 130(5), 748–768.

    Article  Google Scholar 

  49. Long, G. M., Toppino, T. C., & Kostenbauder, J. F. (1983). As the cube turns: Evidence for two processes in the perception of a dynamic reversible figure. Perception and Psychophysics, 34(1), 29–38.

    Article  Google Scholar 

  50. Lowe, D. (1984). Perceptual organization and visual recognition. Unpublished doctoral dissertation, Stanford University, Stanford, CA.

  51. Mathes, B., Strüber, D., Stadler, M. A., & Basar-Eroglu, C. (2006). Voluntary control of Necker cube reversals modulates the EEG delta- and gamma-band response. Neuroscience Letters, 402, 145–149.

    Article  Google Scholar 

  52. McCone, E., Kanwisher, N., & Duchaine, B. (2007). Can generic expertise explain special processing for faces? Trends in Cognitive Science, 11, 8–15.

    Article  Google Scholar 

  53. Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4, 539–551.

    Article  Google Scholar 

  54. Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.

    Article  Google Scholar 

  55. Mulder, J. A., & Dawson, R. J. M. (1990). Reconstructing polyhedral scenes from single two- dimensional images: The orthogonality hypothesis. In P. K. Patel-Schneider (Ed.), Proceedings of the 8th Biennial Conference of the CSCSI (pp. 238–244). Palo Alto, CA: Morgan-Kaufmann.

    Google Scholar 

  56. Ogawa, Y., Isokawa, T., Matsui, N., Murata, T. (2000). “A neural network model for perceptual alternation of ambiguous figures”. Proceedings IEEE Intl. Workshop on robot and human interactive communication, pp. 264–269.

  57. O’Reilly, R., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience. Cambridge: MIT Press.

    Google Scholar 

  58. Peissig, J. J., Wasserman, E. A., Young, M. E., & Biederman, I. (2002). Learning an object from multiple views enhances its recognition in an orthogonal rotational axis in pigeons. Vision Research, 42, 2051–2062.

    Article  Google Scholar 

  59. Perkins, D. N. (1968). “Cubic corners”. Quarterly Progress Report Research Lab in Electronics, No. 89, Massachusetts Institute of Technology.

  60. Perkins, D. N. (1972). Visual discrimination between rectangular and nonrectangular para lelpipeds. Perception and Psychophysical, 12, 396–400.

    Article  Google Scholar 

  61. Perkins, D. N. (1971). Geometry and the Perception of Pictures: Three Studies, Project Zero, Technical Report no. 5. Cambridge, MA: Harvard University Press.

  62. Peterson, M. A., & Gibson, B. S. (1991). Directing spatial attention within an object: altering the functional equivalence of shape descriptions. Journal of Experimental Psychology, Human Perception and Performance, 17(1), 170–182.

    Article  Google Scholar 

  63. Pheiffer, C. H., Eure, S. B., & Hamilton, C. B. (1956). Reversible figures and eye- movements. American Journal of Psychology, 69, 452–455.

    Article  Google Scholar 

  64. Pylkkänen, L., & McElree, B. (2007). An MEG study of silent meaning. Journal of Cognitive Neuroscience, 19(11), 1905–1921.

    Article  Google Scholar 

  65. Reisberg, D., & O’Shaughnessy, M. (1984). Diverting subjects’ concentration slows figural reversals. Perception, 13(4), 461–8.

    Article  Google Scholar 

  66. Richards, J. E., & Gibson, T. L. (1997). Extended visual fixation in young infants: Look distributions, heart rate changes, and attention. Child Development, 68, 1041–1056.

    Article  Google Scholar 

  67. Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.

    Google Scholar 

  68. Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cerebral Cortex, 18(9), 2010–2018.

    Article  Google Scholar 

  69. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transaction Pattern Analysis and Machine Intelligence, 29(3), 411–425.

    Article  Google Scholar 

  70. Seubert, J., Humphreys, G. W., Muller, H. J., & Gramann, K. (2008). Straight after the turn: the role of the parietal lobes in egocentric space processing. Neurocase, 14(2), 204–19.

    Article  Google Scholar 

  71. Shepard, R. N. (1981). Perceptual organization. In M. Kubovy & J. Pomerantz (Eds.), Psychophysical complementarity. Hillsdale, NJ: Erlbaum Associates.

    Google Scholar 

  72. Shepard, R. N. (1990). Mind sights. New York: Freeman and Company.

    Google Scholar 

  73. Shevelev, I. A., Lazareva, N. A., Novikova, R. V., Tikhomirov, A. S., Sharaev, G. A., & Cuckiridze, D. Y. (2001). Tuning to Y-like figures in the cat striate neurons. Brain Research Bulletin, 54(5), 543–551.

    Article  Google Scholar 

  74. Strüber, Daniel, & Stadler, Michael. (1999). Differences in top-down influences on the reversal rate of different categories of reversible figures. Perception, 28, 1185–1196.

    Article  Google Scholar 

  75. Suppes, P., Cohen, M., Laddaga, R., Anliker, J., & Floyd, R. (1983). A procedural theory of eye movements in doing arithmetic. Journal of Mathematical Psychology, 27(4), 341–369.

    Article  Google Scholar 

  76. Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139.

    Article  Google Scholar 

  77. Trehub, A. (1991). The cognitive brain. Cambridge: MIT Press.

    Google Scholar 

  78. Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  Google Scholar 

  79. Vidal, J. R., Chaumon, M., O’Reagan, J. K., & Tallon-Baudry, C. (2006). Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals. Journal of Cognitive Neuroscience, 18(11), 1850–1862.

    Article  Google Scholar 

  80. Vogels, R., Biederman, I., Bar, M., & Lorincz, A. (2001). Inferior temporal neurons show greater sensitivity to nonaccidental than metric differences. Journal of Cognitive Neuroscience, 134, 444–453.

    Article  Google Scholar 

  81. Witkin, A. P., & Tenenbaum, J. M. (1983). On the role of structure in vision. In J. Beck, B. Hope, & A. Rosenfeld (Eds.), Human and machine vision (pp. 481–543). Orlando, FL: Academic Press.

    Google Scholar 

  82. Ware, C. (1995). Dynamic stereo displays. Proceedings of the SIGCHI conference on human factors in computing systems (pp. 310–316).

  83. Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford: Oxford University Press.

    Google Scholar 

  84. Wolfe, J. M. (2000). Attention is fast but volition is slow. Nature, 406, 691.

    Article  Google Scholar 

  85. Wolfe, J. M., & Friedman-Hill, S. R. (1992). The role of symmetry in visual search. Psychological Science, 3(3), 194–198.

    Article  Google Scholar 

  86. Yonas, A., & Arteberry, M. E. (1994). Infants perceive spatial structure specified by line drawings. Perception, 23, 1427–1435.

    Article  Google Scholar 

  87. Yonas, A., Cleaves, W. T., & Pettersen, L. (1978). Development of sensitivity to pictorial depth. Science, 200, 77–79.

    Article  Google Scholar 

  88. Young, A. W., & Deregowski, J. (1981). Learning to see the impossible. Perception, 10, 91–105.

  89. Zwicky, A. M., & Sadock, J. M. (1975). Ambiguity tests and how to fail them. In L. Kimball (Ed.), Syntax and semantics (Vol. 4, pp. 1–36). New York: Academic Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philipp Koralus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koralus, P. Can visual cognitive neuroscience learn anything from the philosophy of language? Ambiguity and the topology of neural network models of multistable perception. Synthese 193, 1409–1432 (2016). https://doi.org/10.1007/s11229-014-0518-y

Download citation

Keywords

  • Ambiguous figures
  • Nonspecificity
  • Neural models
  • Multistable perception
  • Necker cube
  • Communication-through-coherence (CTC) hypothesis
  • Attention