, Volume 193, Issue 5, pp 1409–1432 | Cite as

Can visual cognitive neuroscience learn anything from the philosophy of language? Ambiguity and the topology of neural network models of multistable perception

  • Philipp Koralus


The Necker cube and the productive class of related stimuli involving multiple depth interpretations driven by corner-like line junctions are often taken to be ambiguous. This idea is normally taken to be as little in need of defense as the claim that the Necker cube gives rise to multiple distinct percepts. In the philosophy of language, it is taken to be a substantive question whether a stimulus that affords multiple interpretations is a case of ambiguity. If we take into account what have been identified as hallmark features of ambiguity and look at the empirical record, it appears that the Necker cube and related stimuli are not ambiguous. I argue that this raises problems for extant models of multistable perception in cognitive neuroscience insofar as they are purported to apply to these stimuli. Helpfully, similar considerations also yield reasons to suggest that the relevant models are well motivated for other instances of multistable perception. However, a different breed of model seems to be required for the Necker cube and related stimuli. I end with a sketch how one may go about designing such a model relying on oscillatory patters in neural firing. I suggest that distinctions normally confined to the philosophy of language are important for the study of perception, a perspective with a growing number of adherents.


Ambiguous figures Nonspecificity Neural models  Multistable perception Necker cube Communication-through-coherence (CTC) hypothesis Attention 


  1. Albers, J. (1977). Despite straight lines. Cambridge: MIT Press.Google Scholar
  2. Ashworth, E. J. (1991). Signification and modes of signifying in thirteenth-century logic: A preface to aquinas on analogy. Medieval Philosophy and Theology., 1, 39–67.Google Scholar
  3. Atlas, J. (1989). Philosophy without ambiguity. Oxford: Clarendon Press.Google Scholar
  4. Atlas, J. (2005). Logic, meaning, and conversation. Oxford: Oxford University Press.Google Scholar
  5. Babich, S., & Standing, L. (1981). Satiation effects with reversible figures. Perceptual and Motor Skills, 52, 203–210.Google Scholar
  6. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.CrossRefGoogle Scholar
  7. Biederman, I. (2001). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13, 241–253.CrossRefGoogle Scholar
  8. Biederman, I., & Ju, G. (1988). Surface vs. edge based determinants of visual recognition. Cognitive Psychology, 20(1), 38–64.CrossRefGoogle Scholar
  9. Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228, 477–478.CrossRefGoogle Scholar
  10. Blasdel, G., Obermayer, K., & Kiorpes, L. (1995). Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys. Visual Neuroscience, 12, 589–603.CrossRefGoogle Scholar
  11. Borisyuk, R., Chik, D., & Kazanovich, Y. (2009). Visual perception of ambiguous figures: Synchronization based neural models. Biological Cybernetics, 100, 491–504.CrossRefGoogle Scholar
  12. Borsellino, A., De Marco, A., Allazetta, A., Rinsei, S., & Bartolini, B. (1972). Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik, 10, 139.Google Scholar
  13. Britz, J., Landis, T., & Michels, C. M. (2009). Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cerebral Cortex, 19, 55–65.CrossRefGoogle Scholar
  14. Chalmers, D. (2004). How can we construct a science of consciousness? In M. Gazzaniga (Ed.), The cognitive neurosciences III. Cambridge: MIT Press.Google Scholar
  15. Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience, 16(20), 6443–6453.Google Scholar
  16. Cohen, L. (1959). Perception of reversible figures after brain injury. Archives of Neurology and Psychiatry, 81, 765–775.CrossRefGoogle Scholar
  17. Corbetta, M., Shulman, G. L., Miezin, F. M., & Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270, 802–805.CrossRefGoogle Scholar
  18. Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566–570.CrossRefGoogle Scholar
  19. Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8, 97–107.CrossRefGoogle Scholar
  20. Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6(2), 119–126.CrossRefGoogle Scholar
  21. Cumming, S., (ms). (1989). The attentional foundations of coherence. Manuscript, UCLA.Google Scholar
  22. Deregowski, J. (1969). Perception of the two-pronged trident by two- and three- dimensional perceivers. Journal of Experimental Psychology, 82, 9–13.CrossRefGoogle Scholar
  23. Deregowski, J. (1989). Real space and represented space: Cross-cultural perspectives. Behavioral and Brain Sciences, 12, 51–119.CrossRefGoogle Scholar
  24. Deregowski, J., & Bentley, A. M. (1986). Perception of pictorial space by Bushmen. International Journal of Psychology, 21, 743–752.CrossRefGoogle Scholar
  25. Deregowski, J., & Dziurawiec, S. (1986). Some aspects of comprehension of technical diagrams: An intercultural study. Le Travail Humain, 49, 43–60.Google Scholar
  26. Enns, J. T., & Rensink, R. A. (1991). Preattentive recovery of three-dimensional orientation from line drawings. Psychological Review, 98(3), 335–351.CrossRefGoogle Scholar
  27. Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6, 205–254.CrossRefGoogle Scholar
  28. Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–479.CrossRefGoogle Scholar
  29. Frost, R., Feldman, L. B., & Katz, L. (1990). Phonological ambiguity and lexical ambiguity: Effects on visual and auditory word recognition. Journal of Experimental Psychology, 16, 569–580.Google Scholar
  30. Gillam, B. (1979). Even possible figures can look impossible. Perception, 8, 229–232.CrossRefGoogle Scholar
  31. Greenberg, G. (2011). The Semiotic Spectrum. Doctoral dissertation. Rutgers University.Google Scholar
  32. Grice, H. P. (1975). Logic and conversation. In J. Kimball (Ed.), Syntax and semantics (Vol. 3, pp. 139–151). New York: Academic Press.Google Scholar
  33. Harris, C. M., Hainline, L., Abramov, I., et al. (1988). The distribution of fixation durations in infants and naïve adults. Vision Research, 28, 419–432.CrossRefGoogle Scholar
  34. Hayworth, K. J., & Biederman, I. (2006). Neural evidence for intermediate representations in object recognition. Vision Research, 46, 4026–4031.CrossRefGoogle Scholar
  35. Hochberg, J. E., & Brooks, V. (1962). Pictorial recognition as an unlearned ability. American Journal of Psychology, 75, 624–628.CrossRefGoogle Scholar
  36. Isoglu-Alkac, U., & Strüber, D. (2006). Necker cube reversals during long-term EEG recordings: Sub-bands of alpha activity. International Journal of Psychophysiology, 59(2), 179–189.CrossRefGoogle Scholar
  37. Kayaert, G., Biederman, I., Op de Beeck, H., & Vogels, R. (2005). Tuning for shape dimensions in macaque inferior temporal cortex. European Journal of Neuroscience, 22, 212–224.CrossRefGoogle Scholar
  38. Kayaert, G., Biederman, I., & Vogels, R. (2003). Shape tuning in macaque inferior temporal cortex. Journal of Neuroscience, 23, 3016–3027.Google Scholar
  39. Kanwisher, N., Stanley, D., & Harris, A. (1999). The fusiform face area is selective for faces not animals. NeuroReport, 10, 183–187.CrossRefGoogle Scholar
  40. Kawabata, N. (1987). Interpretive process of depth in line drawing. Systems and computers in Japan, 18(7), 103–109.CrossRefGoogle Scholar
  41. Kawabata, N., & Yamagami, K. (1978). Visual fixation points and depth perception. Vision Research, 18, 853–854.CrossRefGoogle Scholar
  42. Klink, P. C., van Ee, R., Nijs, M. M., Bruwer, G. J., Noest, A. J., & van Wezel, R. J. A. (2008). Early interactions between neuronal adaptation and voluntary control of perceptual choices in bistable vision. Journal of Vision, 8(5), 1–18.CrossRefGoogle Scholar
  43. Koralus, P. (2010). Semantics in Philosophy and Cognitive Neuroscience. PhD Dissertation. Princeton University.Google Scholar
  44. Koralus, P. (2013). Attention, Consciousness, and the semantics of questions. Synthese, doi: 10.1007/s11229-013-0382-1.
  45. Koralus, P. (2014). The erotetic theory of attention: Questions, focus, and distraction. Mind and Language, 29(1), 26–50.CrossRefGoogle Scholar
  46. Kurtzi, Z., & Kanwisher, N. (2000). Cortical regions involved in processing object shape. Journal of Neuroscience, 20(9), 3310–3318.Google Scholar
  47. Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3, 254–264.CrossRefGoogle Scholar
  48. Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychological Bulletin, 130(5), 748–768.CrossRefGoogle Scholar
  49. Long, G. M., Toppino, T. C., & Kostenbauder, J. F. (1983). As the cube turns: Evidence for two processes in the perception of a dynamic reversible figure. Perception and Psychophysics, 34(1), 29–38.CrossRefGoogle Scholar
  50. Lowe, D. (1984). Perceptual organization and visual recognition. Unpublished doctoral dissertation, Stanford University, Stanford, CA.Google Scholar
  51. Mathes, B., Strüber, D., Stadler, M. A., & Basar-Eroglu, C. (2006). Voluntary control of Necker cube reversals modulates the EEG delta- and gamma-band response. Neuroscience Letters, 402, 145–149.CrossRefGoogle Scholar
  52. McCone, E., Kanwisher, N., & Duchaine, B. (2007). Can generic expertise explain special processing for faces? Trends in Cognitive Science, 11, 8–15.CrossRefGoogle Scholar
  53. Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4, 539–551.CrossRefGoogle Scholar
  54. Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.CrossRefGoogle Scholar
  55. Mulder, J. A., & Dawson, R. J. M. (1990). Reconstructing polyhedral scenes from single two- dimensional images: The orthogonality hypothesis. In P. K. Patel-Schneider (Ed.), Proceedings of the 8th Biennial Conference of the CSCSI (pp. 238–244). Palo Alto, CA: Morgan-Kaufmann.Google Scholar
  56. Ogawa, Y., Isokawa, T., Matsui, N., Murata, T. (2000). “A neural network model for perceptual alternation of ambiguous figures”. Proceedings IEEE Intl. Workshop on robot and human interactive communication, pp. 264–269.Google Scholar
  57. O’Reilly, R., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience. Cambridge: MIT Press.Google Scholar
  58. Peissig, J. J., Wasserman, E. A., Young, M. E., & Biederman, I. (2002). Learning an object from multiple views enhances its recognition in an orthogonal rotational axis in pigeons. Vision Research, 42, 2051–2062.CrossRefGoogle Scholar
  59. Perkins, D. N. (1968). “Cubic corners”. Quarterly Progress Report Research Lab in Electronics, No. 89, Massachusetts Institute of Technology.Google Scholar
  60. Perkins, D. N. (1972). Visual discrimination between rectangular and nonrectangular para lelpipeds. Perception and Psychophysical, 12, 396–400.CrossRefGoogle Scholar
  61. Perkins, D. N. (1971). Geometry and the Perception of Pictures: Three Studies, Project Zero, Technical Report no. 5. Cambridge, MA: Harvard University Press.Google Scholar
  62. Peterson, M. A., & Gibson, B. S. (1991). Directing spatial attention within an object: altering the functional equivalence of shape descriptions. Journal of Experimental Psychology, Human Perception and Performance, 17(1), 170–182.CrossRefGoogle Scholar
  63. Pheiffer, C. H., Eure, S. B., & Hamilton, C. B. (1956). Reversible figures and eye- movements. American Journal of Psychology, 69, 452–455.CrossRefGoogle Scholar
  64. Pylkkänen, L., & McElree, B. (2007). An MEG study of silent meaning. Journal of Cognitive Neuroscience, 19(11), 1905–1921.CrossRefGoogle Scholar
  65. Reisberg, D., & O’Shaughnessy, M. (1984). Diverting subjects’ concentration slows figural reversals. Perception, 13(4), 461–8.CrossRefGoogle Scholar
  66. Richards, J. E., & Gibson, T. L. (1997). Extended visual fixation in young infants: Look distributions, heart rate changes, and attention. Child Development, 68, 1041–1056.CrossRefGoogle Scholar
  67. Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.Google Scholar
  68. Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cerebral Cortex, 18(9), 2010–2018.CrossRefGoogle Scholar
  69. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transaction Pattern Analysis and Machine Intelligence, 29(3), 411–425.CrossRefGoogle Scholar
  70. Seubert, J., Humphreys, G. W., Muller, H. J., & Gramann, K. (2008). Straight after the turn: the role of the parietal lobes in egocentric space processing. Neurocase, 14(2), 204–19.CrossRefGoogle Scholar
  71. Shepard, R. N. (1981). Perceptual organization. In M. Kubovy & J. Pomerantz (Eds.), Psychophysical complementarity. Hillsdale, NJ: Erlbaum Associates.Google Scholar
  72. Shepard, R. N. (1990). Mind sights. New York: Freeman and Company.Google Scholar
  73. Shevelev, I. A., Lazareva, N. A., Novikova, R. V., Tikhomirov, A. S., Sharaev, G. A., & Cuckiridze, D. Y. (2001). Tuning to Y-like figures in the cat striate neurons. Brain Research Bulletin, 54(5), 543–551.CrossRefGoogle Scholar
  74. Strüber, Daniel, & Stadler, Michael. (1999). Differences in top-down influences on the reversal rate of different categories of reversible figures. Perception, 28, 1185–1196.CrossRefGoogle Scholar
  75. Suppes, P., Cohen, M., Laddaga, R., Anliker, J., & Floyd, R. (1983). A procedural theory of eye movements in doing arithmetic. Journal of Mathematical Psychology, 27(4), 341–369.CrossRefGoogle Scholar
  76. Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139.CrossRefGoogle Scholar
  77. Trehub, A. (1991). The cognitive brain. Cambridge: MIT Press.Google Scholar
  78. Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.CrossRefGoogle Scholar
  79. Vidal, J. R., Chaumon, M., O’Reagan, J. K., & Tallon-Baudry, C. (2006). Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals. Journal of Cognitive Neuroscience, 18(11), 1850–1862.CrossRefGoogle Scholar
  80. Vogels, R., Biederman, I., Bar, M., & Lorincz, A. (2001). Inferior temporal neurons show greater sensitivity to nonaccidental than metric differences. Journal of Cognitive Neuroscience, 134, 444–453.CrossRefGoogle Scholar
  81. Witkin, A. P., & Tenenbaum, J. M. (1983). On the role of structure in vision. In J. Beck, B. Hope, & A. Rosenfeld (Eds.), Human and machine vision (pp. 481–543). Orlando, FL: Academic Press.Google Scholar
  82. Ware, C. (1995). Dynamic stereo displays. Proceedings of the SIGCHI conference on human factors in computing systems (pp. 310–316).Google Scholar
  83. Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford: Oxford University Press.Google Scholar
  84. Wolfe, J. M. (2000). Attention is fast but volition is slow. Nature, 406, 691.CrossRefGoogle Scholar
  85. Wolfe, J. M., & Friedman-Hill, S. R. (1992). The role of symmetry in visual search. Psychological Science, 3(3), 194–198.CrossRefGoogle Scholar
  86. Yonas, A., & Arteberry, M. E. (1994). Infants perceive spatial structure specified by line drawings. Perception, 23, 1427–1435.CrossRefGoogle Scholar
  87. Yonas, A., Cleaves, W. T., & Pettersen, L. (1978). Development of sensitivity to pictorial depth. Science, 200, 77–79.CrossRefGoogle Scholar
  88. Young, A. W., & Deregowski, J. (1981). Learning to see the impossible. Perception, 10, 91–105.Google Scholar
  89. Zwicky, A. M., & Sadock, J. M. (1975). Ambiguity tests and how to fail them. In L. Kimball (Ed.), Syntax and semantics (Vol. 4, pp. 1–36). New York: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of OxfordOxford UK

Personalised recommendations