# Regular probability comparisons imply the Banach–Tarski Paradox

## Abstract

Consider the regularity thesis that each possible event has non-zero probability. Hájek challenges this in two ways: (a) there can be nonmeasurable events that have no probability at all and (b) on a large enough sample space, some probabilities will have to be zero. But arguments for the existence of nonmeasurable events depend on the axiom of choice (AC). We shall show that the existence of anything like regular probabilities is by itself enough to imply a weak version of AC sufficient to prove the Banach–Tarski Paradox on the decomposition of a ball into two equally sized balls, and hence to show the existence of nonmeasurable events. This provides a powerful argument against unrestricted orthodox Bayesianism that works even without AC. A corollary of our formal result is that if every partial order extends to a total preorder while maintaining strict comparisons, then the Banach–Tarski Paradox holds. This yields an argument that incommensurability cannot be avoided in ambitious versions of decision theory.

## Keywords

Set theory Axiom of choice Probability Regularity Bayesianism Incommensurability Credence Rationality Decision theory Nonmeasurable sets## References

- Appiah, K. A. (1985).
*Assertion and conditionals*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Bell, J. L., & Fremlin, D. H. (1972). A geometric form of the axiom of choice.
*Fundamenta Mathematicae*,*77*, 167–170.Google Scholar - Bernstein, A. R., & Wattenberg, F. (1969). Non-standard measure theory. In W. A. J. Luxemberg (Ed.),
*Applications of model theory of algebra, analysis, and probability*. New York: Holt, Rinehart and Winston.Google Scholar - Borel, E. (1946).
*Les paradoxes de l’infini*. Paris: Gallimard.Google Scholar - de Finetti, B. (1931). Sul significato soggestivo della probabilità.
*Fundamenta Mathematicae*,*17*, 298–329.Google Scholar - de Finetti, B. (1975). Theory of Probability. (A. Machi & A. F. M. Smith, Trans.). New York: Wiley.Google Scholar
- Easwaran, K. (2014). Regularity and hyperreal credences.
*Philosophical Review*,*123*, 1–41.CrossRefGoogle Scholar - Felgner, U., & Truss, J. K. (1999). The independence of the prime ideal theorem from the order-extension principle.
*Journal of Symbolic Logic*,*64*, 199–215.CrossRefGoogle Scholar - Foreman, M., & Wehrung, Friedrich. (1991). The Hahn-Banach Theorem implies the existence of a non-Lebesgue measurable set.
*Fundamenta Mathematicae*,*138*, 13–19.Google Scholar - Hájek, A. (2003). What conditional probability could not be?
*Synthese*,*137*, 273–323.CrossRefGoogle Scholar - Hájek, A. (2011). Staying regular? Australasian Association of Philosophy Conference, July 2011.Google Scholar
- Hofweber, T. (MS). Cardinality arguments against regular hyperreal-valued probability measures.Google Scholar
- Hofweber, T. (2014). Infinitesimal chances.
*Philosophers’ Imprint, 14*, 1–34.Google Scholar - Howard, P., & Rubin, J. E. (1998).
*Consequences of the axiom of choice*. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar - Jeffreys, H. (1961).
*Theory of probability*(3rd ed.). Oxford: Oxford University Press.Google Scholar - Joyce, J. M. (2010). A defense of imprecise credences in inference and decision.
*Philosophical Perspectives*,*24*, 281–323.CrossRefGoogle Scholar - Kanovei, V., & Shelah, S. (2004). A definable nonstandard model of the reals.
*Journal of Symbolic Logic*,*69*, 159–164.CrossRefGoogle Scholar - Kemeny, J. G. (1955). Fair bets and inductive probabilities.
*Journal of Symbolic Logic*,*20*, 263–73.CrossRefGoogle Scholar - Krauss, P. H. (1968). Representation of conditional probability measures on boolean algebras.
*Acta Mathematica Academiae Scientiarum Hungarica*,*19*, 229–241.CrossRefGoogle Scholar - Laugwitz, D. (1968). Eine nichtarchimedische Erweiterung angeordneter Körper.
*Mathematische Nachrichten*,*37*, 225–236.Google Scholar - Lewis, D. (1986).
*On the plurality of worlds*. Oxford: Blackwell.Google Scholar - Luxemburg, W. (1973). What is nonstandard analysis?
*American Mathematical Monthly, 80*, 38–67.Google Scholar - McGee, V. (1994). Learning the impossible. In E. Eells & B. Skyrms (Eds.),
*Probability and conditionals*(pp. 179–199). Cambridge: Cambridge University Press.Google Scholar - Parikh, R., & Parnes, M. (1974). Conditional probabilities and uniform sets. In A. Hurd & P. Loeb (Eds.),
*Victoria symposium on nonstandard analysis*(pp. 180–194). Berlin: Springer.CrossRefGoogle Scholar - Pawlikowski, J. (1991). The Hahn-Banach theorem implies the Banach-Tarski paradox.
*Fundamenta Mathematicae*,*138*, 21–22.Google Scholar - Pedersen, A. & Paul, M. S. (2013). Strictly coherent preferences, no holds barred. http://www.saet.uiowa.edu/Papers2013/StrictlyCoherentPreferencesNoHoldsBarred_Pedersen.pdf. Accessed 28 April 2014.
- Pitowsky, I. (1989). Quantum probability., Lecture Notes in Physics Springer: Heidelberg.Google Scholar
- Pruss, A. R. (2013a). Probability, regularity, and cardinality.
*Philosophy of Science*,*80*, 231–240.CrossRefGoogle Scholar - Pruss, A. R. (2013b). Null probability, dominance and rotation.
*Analysis*,*73*, 682–685.CrossRefGoogle Scholar - Pruss, A. R. (2016). Divine creative freedom. In J. Kvanvig (Ed.),
*Oxford studies in the philosophy of religion*. Oxford: Oxford University Press.Google Scholar - Rudin, W. (1987).
*Real and complex analysis*(3rd ed.). New York: McGraw Hill.Google Scholar - Shimony, A. (1955). Coherence and the axioms of confirmation.
*Journal of Symbolic Logic, 20*, 1–28.Google Scholar - Solovay, R. M. (1970). A model of set-theory in which every set of rals is Lebesgue measurable.
*Transactions of the American Mathematical Society*,*92*, 1–56.Google Scholar - Skyrms, B. (1980).
*Causal necessity: A pragmatic investigation of the necessity of laws*. New Haven: Yale University Press.Google Scholar - Stalnaker, R. C. (1970). Probability and conditionals.
*Philosophy of Science*,*37*, 64–80.CrossRefGoogle Scholar - Suppes, P. (1994). Qualitative theory of subjective probability. In G. Wright & P. Ayton (Eds.),
*Subjective Probability*. Chichester: Wiley.Google Scholar - Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel.
*Fundamenta Mathematicae*,*16*, 386–389.Google Scholar - van Fraassen, B. C. (1976). Representation of conditional probabilities.
*Journal of Philosophical Logic*,*5*, 417–430.CrossRefGoogle Scholar - Villegas, C. (1967). On qualitative probability.
*American Mathematical Monthly*,*74*, 661–669.CrossRefGoogle Scholar - Wagon, S. (1994).
*The Banach-Tarski paradox*. Cambridge: Cambridge University Press.Google Scholar