Abstract
After recalling the distinction between logic as reasoning and logic as theory of reasoning, we first examine the question of relativity of logic arguing that the theory of reasoning as any other science is relative. In a second part we discuss the emergence of universal logic as a general theory of logical systems, making comparison with universal algebra and the project of mathesis universalis. In a third part we critically present three lines of research connected to universal logic: logical pluralism, non-classical logics and cognitive science.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bazhanov, V. A. (1990). The fate of one forgotten idea: N.A.Vasiliev and his imaginary logic. Studies in Soviet Thought, 39(3–4), 333–334.
Beall, J. C., & Restall, G. (2000). Logical pluralism. Australasian Journal of Philosophy, 78(4), 475–493.
Beall, J. C., & Restall, G. (2006). Logical pluralism. Oxford: Clarendon.
Beziau, J.-Y. (1994). Universal logic. In T. Childers & O. Majer (Eds.), Logica’94–Proceedings of the 8th international symposium (pp. 73–93). Prague.
Beziau, J.-Y. (1995). Recherches sur la Logique Universelle. PhD Thesis, Department of Mathematics, University Denis Diderot, Paris.
Beziau, J.-Y. (2000). What is paraconsistent logic? In D. Batens, et al. (Eds.), Frontiers of paraconsistent logic (pp. 95–111). Baldock: Research Studies Press.
Beziau, J.-Y. (2001). From paraconsistent to universal logic. Sorites, 12, 5–32.
Beziau, J.-Y. (2006a). The paraconsistent logic Z—A possible solution to Jaskowski’s problem. Logic and Logical Philosophy, 15, 99–111.
Beziau, J.-Y. (2006b). 13 questions about universal logic. Bulletin of the Section of Logic, 35, 133–150.
Beziau, J.-Y. (2010a). Logic is not logic. Abstracta, 6, 73–102.
Beziau, J.-Y. (2010b). What is a logic? Towards axiomatic emptiness. Logical Investigations, 16, 272–279.
Beziau, J.-Y. (Ed.). (2012a). Paralogics and the theory of valuation. In Universal logic: An Anthology - From Paul Hertz to Dov Gabbay (pp. 361–372). Birkhäuser, Basel.
Beziau, J.-Y. (2012b). The power of the hexagon. Logica Universalis, 6, 1–43.
Beziau, J.-Y. (Ed.). (2012). Universal logic, an anthology–From Paul Hertz to Dov Gabbay. Basel: Birkhäuser.
Beziau, J.-Y., & Buchsbaum, A. (2013). Let us be antilogical: Anti-classical logic as a logic. In A. Moktefi, A. Moretti, & F. Schang (Eds.), Let us be logical. London: College Publications.
Beziau, J.-Y., & Jacquette, D. (2012). Around and beyond the square of opposition. Basel: Birkhäuser.
Beziau, J.-Y., & Payette, G. (2012). The square of opposition—A general framework for cognition. Bern: Peter Lang.
Birkhoff, G. (1946). Universal algebra. In Comptes Rendus (Ed.), du Premier Congrès Canadien de Mathématiques (pp. 310–326). Toronto: University of Toronto Press.
Birkhoff, G. (1987). Universal algebra. In G.-C. Rota & J. S. Oliveira (Eds.), Selected papers on algebra and topology by Garret Birkhoff (pp. 111–115). Basel: Birkhäuser.
Blanché, R. (1966). Structures intellectuelles. Essai sur l’organisation systématique des concepts. Paris: Vrin.
Bourbaki, N. (1948). L’architecture des mathématiques—La mathématique ou les mathématiques. In F. le Lionnais (Ed), Les grands courants de la pensée mathématique, Cahier du Sud (pp. 35–47); translated as “The Architecture of Mathematics”, American Mathematical Monthly, 57, 221–232, 1950.
Carnap, R. (1934). Logische Syntax der Sprache. Vienna: Springer, translated in English as The logical syntax of language. London: Kegan Paul, 1937.
Couturat, L. (1901). La Logique de Leibniz–D’après des documents inédits. Paris: Félix Alcan.
da Costa, N. C. A., & Beziau, J.-Y. (1994a). Théorie de la valuation. Logique et Analyse, 145–146, 95–117.
da Costa, N. C. A., & Beziau, J.-Y. (1994b). La théorie de la valuation en question. Proceedings of the XI Latin American symposium on mathematical logic (Part 2) (pp. 95–104). Bahia Blanca: Universidad Nacional del Sur.
da Costa, N. C. A., Beziau, J.-Y., & Bueno, O. A. S. (1995). Paraconsistent logic in a historical perspective. Logique et Analyse, 150–152, 111–125.
Descartes, R. (1628). Regulae ad directionem ingenii (Rules for the direction of mind), published in Amsterdam, 1701.
Descartes, R. (1637). Discours de la méthode (Discourse on the method), Leyde.
Destousches, J.-L. (1948). Cours de logique et philosophie générale. Paris: Centre de document universitaire, Fournier & Constane.
Feferman, S., & Feferman, A. B. (2004). Tarski: Life and logic. Cambridge: Cambridge University Press.
Février, P. (1937). Les relations d’incertitude d’Heisenberg et la logique. In Travaux du IXème Congrès International de Philosophie (Vol. VI, pp. 88–94). Paris: Hermann.
Fitting, M. (1992). Preface. Journal of Logic and Computation, 2(6), 783–785.
Gentzen, G. (1934–1935). Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39(2), 176–210, 39(3): 405–431.
Gödel, K. (1932). Zum intuitionistischen Aussagenkalkül. Akademie der Wissenschaften in Wien, Mathematisch-natuirwissenschaft Klasse, 64, 65–66.
Gödel, K. (1933). Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums, 4, 34–38.
Gödel, K. (1949). An example of a new type of cosmological solution of Einstein’s field equations of gravitation. Review of Modern Physics, 21(3), 447–450.
Grothendieck, A. (1974). La nouvelle église universelle. Pourquoi les mathmématiques (pp. 11–35). Paris: UGE.
Henkin, L., Suppes, P. & A. Tarski (eds.). (1958). The axiomatic method with special reference to geometry and physics. Proceedings of an international symposium held at the University of California, Berkeley, December 16, 1957–January 4, 1958 (pp. 291–307). Amsterdam: North-Holland.
Kauppi, R. (1980). Mathesis universalis. In J. Ritter & K. Gründer (Eds.), Historisches Worterbuch der Philosophie (Vol. 5, pp. 937–938). Basel and Stuttgart: Schwabe.
Marion, M. (2012). Louis Rougier on the relativity of logic—An early defence of logical pluralism. In Béziau.
Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 7, 141–143.
Moschovakis, J. R. (2009). The logic of Brouwer and Heyting. In D. M. Gabbay & J. Woods (Eds.), Handbook of the history of logic (Vol. 5). Amsterdam: Elsevier.
Piaget, J. (1950). Introduction à l’épistémologie génétique. Paris: PUF. Translated as Genetic epistemology, Columbia University Press, New York, 1968.
Post, E. (1921). Introduction to a general theory of elementary propositions. American Journal of Mathematics, 13, 163–185.
Riche, J. (2007). From universal algebra to universal logic. In J. Y. Beziau & A. Costa-Leite (Eds.), Perspectives on universal logic (pp. 3–39). Monza: Polimetrica.
Rota, G.-C. (1997). Indiscrete thoughts. Basel: Birkhäuser.
Rougier, L. (1941). The relativity of logic. Philosophy and Phenomenological Research, 2, 137–158, reprinted in (Béziau 2012).
Rougier, L. (1955). Traité de la connaissance. Paris: Gauthiers-Villars.
Rougier, L. (1977). Le conflit du christianisme primitif et de la civilisation antique. Paris: Copernic.
Sokal, A. (1996). A physicist experiments with cultural studies. Lingua Franca, 62–64.
Sokal, A., & Bricmont, J. (1997). Impostures intellectuelles. Paris: Odile Jacob. Translated as Fashionable nonsense, Picador, New York, 1998.
Suppes, P. (2002). Representation and invariance of scientific structures. Stanford: CSLI.
Suszko, R., & (with Brown, D.J.). (1973). Abstract logic. Dissertationes Mathematicae, 102, 43–52.
Sylvester, J. J. (1884). Lectures on the principles of universal algebra. American Journal of Mathematics, 6, 270–286.
Tarski, A. (1928). Remarques sur les notions fondamentales de la méthodologie des mathématiques. In Annales de la Société Polonaise de Mathématique) (Vol. 7, pp. 270–272), translated as “Remarks on Fundamental Concepts of the Methodology of Mathematics” In (Beziau ed 2012).
Tarski, A. (1936). 0 logice matematycznej i metodzie dedukcyjnej, Ksiaznica-Atlas, Lwów and Warsaw (English translation; we refer here to the 4th edition by Jan Tarski: Introduction to logic and to the methodology of the deductive sciences (p. 1994). Oxford: OUP.
Tarski, A. (1937). Sur la méthode déductive. In Travaux du IXe Congrès International de Philosophie (Vol. VI, pp. 95–103). Paris: Hermann.
van Stigt, W. P. (1990). Brouwer’s intuitionism. Amsterdam: North Holland.
Weil, A. (1991). Souvenirs d’apprentissage. Basel: Birkhäuser; translated as The apprenticeship of a mathematician, Basel: Birkhäuser.
Whitehead, A. N. (1898). A treatise of universal algebra. Cambridge: Cambridge University Press.
Whitehead, A. N., & Russell, B. (1910–1913). Principia Mathematica. Cambridge: Cambridge University Press.
Zürn, M. (2000). Vom Nationalstaat lernen, Das zivilisatorische Hexagon in der Weltinnenpolitik. In U. Menzel (Ed.), University PressVom Ewigen Frieden und vom Wohlstand der Nationen (pp. 21–25). Frankfurt.
Acknowledgments
Thanks to anonymous referees and all the people with whom I have been discussing these ideas over the years.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Istvan Németi for his 70th birthday.
Rights and permissions
About this article
Cite this article
Beziau, JY. The relativity and universality of logic. Synthese 192, 1939–1954 (2015). https://doi.org/10.1007/s11229-014-0419-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11229-014-0419-0