Synthese

, Volume 191, Issue 10, pp 2167–2193 | Cite as

New foundations for counterfactuals

Article

Abstract

Philosophers typically rely on intuitions when providing a semantics for counterfactual conditionals. However, intuitions regarding counterfactual conditionals are notoriously shaky. The aim of this paper is to provide a principled account of the semantics of counterfactual conditionals. This principled account is provided by what I dub the Royal Rule, a deterministic analogue of the Principal Principle relating chance and credence. The Royal Rule says that an ideal doxastic agent’s initial grade of disbelief in a proposition \(A\), given that the counterfactual distance in a given context to the closest \(A\)-worlds equals \(n\), and no further information that is not admissible in this context, should equal \(n\). Under the two assumptions that the presuppositions of a given context are admissible in this context, and that the theory of deterministic alethic or metaphysical modality is admissible in any context, it follows that the counterfactual distance distribution in a given context has the structure of a ranking function. The basic conditional logic V is shown to be sound and complete with respect to the resulting rank-theoretic semantics of counterfactuals.

Keywords

Ranking functions Counterfactuals Conditional belief Chance Credence Probability 

References

  1. Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.Google Scholar
  2. Bennett, J. (2003). A philosophical guide to conditionals. Oxford: Clarendon Press.CrossRefGoogle Scholar
  3. Bernstein, A. R., & Wattenberg, F. (1969). Non-standard measure theory. In W. Luxemburg (Ed.), International symposium on the applications of model theory to algebra, analysis, and probability, California Institute of Technology (pp. 171–185). New York: Holt, Reinhart and Winston.Google Scholar
  4. Briggs, R. (2009). The big bad bug bites anti-realists about chance. Sythese, 167, 81–92.Google Scholar
  5. Brössel, P., Eder, A.-M., & Huber, F. (2013). Evidential support and instrumental rationality. Philosophy and Phenomenological Research, 87, 279–300.Google Scholar
  6. Collins, J., Hall, N., & Paul, L. A. (Eds.). (2004). Causation and counterfactuals. Cambridge, MA: MIT Press.Google Scholar
  7. Connolly, T., Ordóñatez, L. D., & Coughlan, R. (1997). Regret and responsibility in the evaluation of decision outcomes. Organizational Behavior and Human Decision Processes, 70, 73–85.Google Scholar
  8. Edgington, D. (1995). On conditionals. Mind, 104, 235–329.CrossRefGoogle Scholar
  9. Edgington, D. (2008). Counterfactuals. Proceedings of the Aristotelian Society, 108, 1–21.CrossRefGoogle Scholar
  10. Eriksson, L., & Hájek, A. (2007). What are degrees of belief? Studia Logica, 86, 185–215.Google Scholar
  11. Field, H. (1978). A note on Jeffrey conditionalization. Philosophy of Science, 45, 361–367.CrossRefGoogle Scholar
  12. Gibbard, A. (1981). Two recent theories of conditionals. In W. Harper, R. Stalnaker, & G. Pearce (Eds.), Ifs (pp. 211–247). Dordrecht: D. Reidel.Google Scholar
  13. Gillies, A. S. (2007). Counterfactual scorekeeping. Linguistics and Philosophy, 30, 329–360.CrossRefGoogle Scholar
  14. Gillies, A. S. (2009). On truth-conditions for If (but not quite only If). Philosophical Review, 118, 325–349.Google Scholar
  15. Gundersen, L. B. (2004). Outline of a new semantics for counterfactuals. Pacific Philosophical Quarterly, 85, 1–20.CrossRefGoogle Scholar
  16. Hall, N. (1994). Correcting the guide to objective chance. Mind, 103, 505–518.CrossRefGoogle Scholar
  17. Herzberger, H. G. (1979). Counterfactuals and consistency. Journal of Philosophy, 76, 83–88.CrossRefGoogle Scholar
  18. Hild, M., & Spohn, W. (2008). The measurement of ranks and the laws of iterated contraction. Artificial Intelligence, 172, 1195–1218.CrossRefGoogle Scholar
  19. Hintikka, J. (1961). Knowledge and belief. An introduction to the logic of the two notions. Ithaca, NY: Cornell University Press.Google Scholar
  20. Hájek, A. (ms). Most counterfactuals are false.Google Scholar
  21. Hoefer, C. (1997). On Lewis’s objective chance: ‘Humean supervenience debugged’. Mind, 106, 321–334.CrossRefGoogle Scholar
  22. Huber, F. (2006). Ranking functions and rankings on languages. Artificial Intelligence, 170, 462–471.CrossRefGoogle Scholar
  23. Huber, F. (2007). The consistency argument for ranking functions. Studia Logica, 86, 299–329.CrossRefGoogle Scholar
  24. Huber, F. (2011). Lewis causation is a special case of Spohn causation. British Journal for the Philosophy of Science, 62, 207–210.CrossRefGoogle Scholar
  25. Huber, F. (2013). Structural equations and beyond. The Review of Symbolic Logic, 6, 709–732.CrossRefGoogle Scholar
  26. Huber, F. (ms). What should I believe about what would have been the case? Unpublished manuscript.Google Scholar
  27. Iatridou, S. (2000). The grammatical ingredients of counterfactuality. Linguistic Inquiry, 31, 231–270.CrossRefGoogle Scholar
  28. Jeffrey, R. C. (1983). The logic of decision (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  29. Joyce, J. M. (1998). A non-pragmatic vindication of probabilism. Philosophy of Science, 65, 575–603.CrossRefGoogle Scholar
  30. Joyce, J. M. (2009). Accuracy and coherence: Prospects for an alethic epistemology for partial belief. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of belief. Synthese library (Vol. 342, pp. 263–297). Dordrecht: Springer.Google Scholar
  31. Knobe, J., & Nichols, S. (Eds.). (2008). Experimental philosophy. Oxford: Oxford University Press.Google Scholar
  32. Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models, and cumulative logics. Artificial Intelligence, 40, 167–207.CrossRefGoogle Scholar
  33. Kripke, S. A. (1959). A completeness theorem in modal logic. Journal of Symbolic Logic, 24, 1–14.CrossRefGoogle Scholar
  34. Kroedel, T., & Huber, F. (2013). Counterfactual dependence and arrow. Nos, 47, 453–466.Google Scholar
  35. Leitgeb, H. (2012a). A probabilistic semantics for counterfactuals. Part A. Review of Symbolic Logic, 5, 26–84.CrossRefGoogle Scholar
  36. Leitgeb, H. (2012b). A probabilistic semantics for counterfactuals. Part B. Review of Symbolic Logic, 5, 85–121.CrossRefGoogle Scholar
  37. Lewis, D. K. (1973). Counterfactuals. Cambridge, MA: Harvard University Press.Google Scholar
  38. Lewis, D. K. (1979). Counterfactual dependence and time’s arrow. Nos, 13, 455–476.Google Scholar
  39. Lewis, D. K. (1980). A subjectivist’s guide to objective chance. In R. C. Jeffrey (Ed.), Studies in inductive logic and probability (Vol. II, pp. 263–293). Berkeley: University of Berkeley Press.Google Scholar
  40. Lewis, D. (1981). Ordering semantics and premise semantics for counterfactuals. Journal of Philosophical Logic, 10, 217–234.CrossRefGoogle Scholar
  41. Lewis, D. K. (1986). Introduction. In D. Lewis (Ed.), Philosophical papers II (pp. ix–xvii). Oxford: Oxford University Press.Google Scholar
  42. Lewis, D. K. (1994). Humean supervenience debugged. Mind, 103, 473–490.CrossRefGoogle Scholar
  43. Menzies, P. (2004). Difference-making in context. In J. Collins, N. Hall, & L. A. Paul (Eds.), Causation and counterfactuals (pp. 139–180). Cambridge, MA: MIT Press.Google Scholar
  44. Moss, S. (2012). On the pragmatics of counterfactuals. Nos, 46, 561–586.Google Scholar
  45. Mumford, S. (1998). Dispositions. Oxford: Oxford University Press.Google Scholar
  46. Nozick, R. (1981). Philosophical explanations. Oxford: Oxford University Press.Google Scholar
  47. Percival, P. (2002). Epistemic consequentialism. Supplement to the Proceedings of the Aristotelian Society, 76, 121–151.CrossRefGoogle Scholar
  48. Popper, K. R. (1955). Two autonomous axiom systems for the calculus of probabilities. British Journal for the Philosophy of Science, 6, 51–57.CrossRefGoogle Scholar
  49. Quine, W. V. O. (1950). Methods of logic. New York: Holt, Rinehart, and Winston.Google Scholar
  50. Rényi, A. (1955). On a new axiomatic system for probability. Acta Mathematica Academiae Scientiarum Hungaricae, 6, 285–335.Google Scholar
  51. Shenoy, P. P. (1991). On Spohn’s rule for revision of beliefs. International Journal of Approximate Reasoning, 5, 149–181.CrossRefGoogle Scholar
  52. Sobel, H. J. (1970). Utilitarianisms: Simple and general. Inquiry, 13, 394–449.CrossRefGoogle Scholar
  53. Spohn, W. (1986). On the representation of Popper measures. Topoi, 5, 69–74.CrossRefGoogle Scholar
  54. Spohn, W. (1988). Ordinal conditional functions: A dynamic theory of epistemic states. In W. L. Harper & B. Skyrms (Eds.), Causation in decision, belief change, and statistics II (pp. 105–134). Dordrecht: Kluwer.CrossRefGoogle Scholar
  55. Spohn, W. (2010). Chance and necessity: From Humean supervenience to Humean projection. In E. Eells & J. Fetzer (Eds.), The place of probability in science. Boston studies in the philosophy of science (Vol. 284, pp. 101–131). Dordrecht: Springer.Google Scholar
  56. Spohn, W. (2012). The laws of belief. Ranking theory and its philosophical applications. Oxford: Oxford University Press.CrossRefGoogle Scholar
  57. Stalnaker, R. C. (1968). A theory of conditionals. In N. Rescher (Ed.), Studies in logical theory. American philosophical quarterly. Monograph series (Vol. 2, pp. 98–112). Oxford: Blackwell.Google Scholar
  58. Stalnaker, R. C. (1970). Probability and conditionality. Philosophy of Science, 37, 64–80.CrossRefGoogle Scholar
  59. Stalnaker, R. C. (1981). A defense of conditional excluded middle. In W. Harper, R. Stalnaker, & G. Pearce (Eds.), Ifs: Conditionals, belief, decision, chance, and time (pp. 87–104). Dordrecht: D. Reidel.Google Scholar
  60. Stalnaker, R. C. (1996). Varieties of supervenience. Philosophical Perspectives, 10, 221–241.Google Scholar
  61. Stalnaker, R. C. (1998). On the representation of context. Journal of Logic, Language, and Information, 7, 3–19.CrossRefGoogle Scholar
  62. Stalnaker, R. C. (1999). Context and content. Oxford: Oxford University Press.CrossRefGoogle Scholar
  63. Stalnaker, R. C. (2002). Epistemic consequentialism. Supplement to the Proceedings of the Aristotelian Society, 76, 153–168.CrossRefGoogle Scholar
  64. Thau, M. (1994). Undermining and admissibility. Mind, 103, 491–503.CrossRefGoogle Scholar
  65. Williamson, T. (2000). Knowledge and its limits. Oxford: Blackwell.Google Scholar
  66. Williamson, T. (2007). The philosophy of philosophy. Oxford: Blackwell.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of TorontoTorontoCanada

Personalised recommendations