Synthese

, Volume 191, Issue 2, pp 263–285 | Cite as

Dreams: an empirical way to settle the discussion between cognitive and non-cognitive theories of consciousness

Article

Abstract

Cognitive theories claim, whereas non-cognitive theories deny, that cognitive access is constitutive of phenomenology. Evidence in favor of non-cognitive theories has recently been collected by Block and is based on the high capacity of participants in partial-report experiments compared to the capacity of the working memory. In reply, defenders of cognitive theories have searched for alternative interpretations of such results that make visual awareness compatible with the capacity of the working memory; and so the conclusions of such experiments remain controversial. Instead of entering the debate between alternative interpretations of partial-report experiments, this paper offers an alternative line of research that could settle the discussion between cognitive and non-cognitive theories of consciousness. Here I relate the neural correlates of cognitive access to empirical research into the neurophysiology of dreams; cognitive access seems to depend on the activity of the dorsolateral prefrontal cortex. However, that area is strongly deactivated during sleep; a period when we entertain conscious experiences: dreams. This approach also avoids the classic objection that consciousness should be inextricably tied to reportability or it would fall outside the realm of science.

Keywords

Consciousness Cognitive access Dorsolateral prefrontal cortex Dreams Phenomenology Working memory 

References

  1. Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press.Google Scholar
  2. Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative Physiology Pschology, 90(3), 293–302.CrossRefGoogle Scholar
  3. Block, N. (1995–2002). On a confusion about the function of consciousness. In N. Block (Ed.), Consciousness, function, and representation: Collected papers (Vol. 1). Chester: Bradford Books.Google Scholar
  4. Block, N. (2007a). Consciousness, accessibility, and the mesh between psychology and neuroscience. Behavioral and Brain Sciences, 30, 481–548.Google Scholar
  5. Block, N. (2007b). Overflow, access, and attention. Behavioral and Brain Sciences, 30, 530–542.Google Scholar
  6. Block, N. (2011). Perceptual consciousness overflows cognitive access. Trends in Cognitive Sciences, 12, 567–575.CrossRefGoogle Scholar
  7. Block, N. (2012). Response to Kouider et al.: Which view is better supported by the evidence? Trends in Cognitive Sciences, 16(3), 141–142.Google Scholar
  8. Braun, A., Balkin, T. J., Wesenten, N. J., Carson, R., Varga, M., Baldwin, P., et al. (1997). Regional cerebral blood flow throughout the sleep wake cycle. An H2(15)O pet study. Brain, 120, 1173–1197.CrossRefGoogle Scholar
  9. Brown, R. (2012). The myth of phenomenological overflow. Consciousness and Cognition, 21(2), 599–604.CrossRefGoogle Scholar
  10. Brown, R., & Lau, H. (forthcoming). The emperor’s new phenomenology? The empirical case for conscious experience without first-order representations. In: A. Pautz, D. Stoljar (Eds.) Themes from block. Cambridge, MA: MIT Press.Google Scholar
  11. Cohen, M., & Dennett, D. (2011). Consciousness cannot be separated from function. Trends in Cognitive Sciences, 15, 358–364.CrossRefGoogle Scholar
  12. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386(6625), 608–611.CrossRefGoogle Scholar
  13. Cowan, N. (2005). Working-memory capacity limits in a theoretical context. In: C. Izawa, N. Ohta (Eds.) Human learning and memory: Advances in theory and applications. The 4th Tsukuba international conference on memory. Mahwah, NJ: Erlbaum.Google Scholar
  14. Curtis, C., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7, 415–423.CrossRefGoogle Scholar
  15. Curtis, C. E. (2006). Prefrontal and parietal contributions to spatial working memory. Neuroscience, 139(1), 173–180.CrossRefGoogle Scholar
  16. Dehaene, S. (2009). Neural global workspace. In P. Wilken & A. C. Tim Bayne (Eds.), The Oxford companion to consciousness. Oxford: Oxford University Press.Google Scholar
  17. Dehaene, S., & Changeux, J. P. (2004). Neural mechanisms for access to consciousness. In M. Gazzaniga (Ed.), The cognitive neuroscience (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  18. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79, 1–37.CrossRefGoogle Scholar
  19. Dehaene, S., Kerzberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy for Sciences of the United States of America, 95, 14529–14534.CrossRefGoogle Scholar
  20. Dement, W., & Kleitman, N. (1957). The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming. Journal of Experimental Psychology, 53, 339–346.CrossRefGoogle Scholar
  21. Dennett, D. (1976). Are dreams experiences? Philosophical Review, 73, 151–171.CrossRefGoogle Scholar
  22. Domhoff, W. (1996). Finding meaning in dreams: A quantitative approach. Boston, MA: Springer.CrossRefGoogle Scholar
  23. Dresler, M., Koch, S., Wehrle, R., Spoormaker, V., Holsboer, F., Steiger, A., et al. (2011). Dreamed movement elicits activation in the sensorimotor cortex. Current Biology, 21, 1833–1837.CrossRefGoogle Scholar
  24. Dresler, M., Wehrle, R., Spoormaker, V., Koch, S., Holsboe, F., Steiger, A., et al. (2012). Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: A combined EEG/fMRI case study. Sleep, 35, 1017–1020.Google Scholar
  25. Fahrenfort, J. J., & Lamme, V. A. (2012). A true science of consciousness explains phenomenology: Comment on Cohen and Dennett. Trends in Cognitive Sciences, 16(3), 138–139.CrossRefGoogle Scholar
  26. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkeys dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.Google Scholar
  27. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1990). Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. Journal of Neurophysiology, 63(4), 814–831.Google Scholar
  28. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1991). Neuronal activity related to saccadic eye movements in the monkeys dorsolateral prefrontal cortex. Journal of Neurophysiology, 65(6), 1464–1483.Google Scholar
  29. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic scotomas. Journal of Neuroscience, 13(4), 1479–1497.Google Scholar
  30. Fuster, J. (2008). The prefrontal cortex (4th ed.). London: Academic Press.Google Scholar
  31. Fuster, J., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(997), 652–654.CrossRefGoogle Scholar
  32. Goldman, P. S., & Rosvold, H. E. (1970). Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Experimental Neurology, 27(2), 291–304.CrossRefGoogle Scholar
  33. Goldman-Rakic, P. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational knowledge. In: Handbook of physiology. Bethesda, MD: American Physiological Society.Google Scholar
  34. Goldman-Rakic, P. S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137–156.CrossRefGoogle Scholar
  35. Hall, C. S., & Van de Castle, R. (1966). The content analysis of dreams. New York: Appleton-Century-Crofts.Google Scholar
  36. Haynes, L., & Rees, G. (2003). What defines a contour in metacontrast masking? Perception 32.Google Scholar
  37. Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). General mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859–862.CrossRefGoogle Scholar
  38. Hobson, A. (2009). The neurobiology of consciousness: Lucid dreaming wakes up. International Journal of Dream Research, 2, 41–44.Google Scholar
  39. Hobson, J., Pace-Schott, E., & Stickgold, R. (2000). Toward a cognitive neuroscience of conscious states. Behavioral and Brain Science, 23, 793–842.CrossRefGoogle Scholar
  40. Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science, 340(6136), 639–642.CrossRefGoogle Scholar
  41. Ichikawa, J. (2009). Dreaming and imagination. Mind and Language, 24(1), 103–121.CrossRefGoogle Scholar
  42. Ichikawa, J., & Sosa, E. (2009). Dreaming, philosophical issues. In P. Wilken & A. C. Tim Bayne (Eds.), The Oxford companion to consciousness. Oxford: Oxford University Press.Google Scholar
  43. Ivanowich, M. (2013). Commentary on ’Not a HOT dream’ by Miguel Angel Sebastian. In: Consciousness inside and out: Phenomenology, neuroscience, and the nature of experience. Dordrecht: Springer.Google Scholar
  44. Jacobsen, C. (1936). Studies of cerebral function in primates. I. The functions of the frontal associations areas in monkeys. Comparative Psychology Monographs, 13, 3–60.Google Scholar
  45. Kahn, D., & Hobson, J. A. (2005). A comparison of waking and dreaming thought. Consciousness and Cognition, 14, 429–438.CrossRefGoogle Scholar
  46. Kosslyn, S. M., & Koenig, O. (1992). Wet mind: The new cognitive neuroscience. New York: Macmillan.Google Scholar
  47. Kouider, S., de Gardelle, V., Sackur, J., & Dupoux, E. (2010). How rich is consciousness? The partial awareness hypothesis. Trends in Cognitive Sciences, 14, 301–307.CrossRefGoogle Scholar
  48. Kouider, S., Sackur, J., & de Gardelle, V. (2012). Do we still need phenomenal consciousness? Comment on Block. Trends in Cognitive Sciences, 16(3), 140–141.CrossRefGoogle Scholar
  49. LaBerge, S. (1988). Lucid dreaming in western literature. In: Conscious mind, sleeping brain. Perspectives on lucid dreaming. New York: Plenum.Google Scholar
  50. LaBerge, S. (2000). Lucid dreaming: Evidence and methodology. Behavioral and Brain Sciences, 23(6), 962–963.CrossRefGoogle Scholar
  51. LaBerge, S., & Dement, W. (1982). Voluntary control of respiration during REM sleep. Sleep Research, 11, 107.Google Scholar
  52. LaBerge, S., Nagel, L. E., Dement, W. C., & Zarcone, V. P. (1981). Lucid dreaming verified by volitional communication during REM sleep. Perceptual and Motor Skills, 5, 727–732.CrossRefGoogle Scholar
  53. Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43(2), 149–164.CrossRefGoogle Scholar
  54. Lau, H., & Passingham, R. (2006). Relative blindsight in normal observers and the neural correlate of visual consciousness. Proceedings of the National Academy of Science United States of America, 103(49), 18763–18768.CrossRefGoogle Scholar
  55. Leclair-Visonneau, L., Oudiette, D., Gaymard, B., Leu-Semenescu, S., & Arnulf, I. (2010). Do the eyes scan dream images during rapid eye movement sleep? Evidence from the rapid eye movement sleep behaviour disorder model. Brain: A Journal of Neurology, 133, 1737–1746.CrossRefGoogle Scholar
  56. Malcolm, M. (1959). Dreaming. London: Routledge and Kegan Paul.Google Scholar
  57. Maquet, P., Peters, J., Aerts, J., Delore, G., Degueldre, C., Luxen, A., et al. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383, 163–166.CrossRefGoogle Scholar
  58. Maquet, P., Ruby, P., Maudoux, A., Albouy, G., Sterpenich, V., Dang-Vu, T., et al. (2005). Human cognition during REM sleep and the activity profile within frontal and parietal cortices: A reappraisal of functional neuroimaging data. Progress in Brain Research, 150, 219–227.CrossRefGoogle Scholar
  59. Metzinger, T. (2003). Being no one: The self-model theory of subjectivity, illustrated edition edn. Cambridge, MA: The MIT Press.Google Scholar
  60. Metzinger, T. (2009). The Ego Tunnel. The science of the mind and the myth of the self. New York: Basic Books.Google Scholar
  61. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.Google Scholar
  62. Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Muzur, A., Pace-Schott, E. F., & Hobson, J. A. (2002). The prefrontal cortex in sleep. Trends in Cognitive Sciences, 6, 475–481.CrossRefGoogle Scholar
  64. Oliveri, M., Turriziani, P., Carlesimo, G. A., Koch, G., Tomaiuolo, F., & Panella, M. (2001). Parieto-frontal interactions in visual-object and visual-spatial working memory: Evidence from transcranial magnetic stimulation. Cerebral Cortex, 11(8), 606–618.CrossRefGoogle Scholar
  65. Oudiette, D., Dealberto, M., Uguccioni, G., Golmard, J., Tafti, M., Garma, L., et al. (2012). Dreaming without REM sleep. Conscious Cognition, 21, 1129–1140.CrossRefGoogle Scholar
  66. Overgaard, M., & Gruennbaum, T. (2012). Cognitive and non-cognitive conceptions of consciousness. Trends in Cognitive Sciences, 16(3), 137–138.CrossRefGoogle Scholar
  67. Phillips, I. (2011). Perception and iconic memory: What Sperling does not show. Mind and Language, 26, 381–411.CrossRefGoogle Scholar
  68. Posner, M. (1994). American physiological society. Proceedings of the National Academy of Sciences of the United States of America, 91, 7398–7403.CrossRefGoogle Scholar
  69. Pribram, K., Mishkin, M., Rosvold, H., & Kaplan, S. (1952). Effects on delayed-response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons. Journal of Comparative Physiology Pschology, 45, 565–575.CrossRefGoogle Scholar
  70. Revonsuo, A. (2006). Inner presence. Consciousness as a biological phenomenon. Cambridge, MA: MIT Press.Google Scholar
  71. Rowarg, H. P., Dement, W. C., & Muzio, J. N. J. N. (1962). Dream imagery: Relationship to rapid eye movements of sleep. Archives of General Psychiatry, 7, 235–258.CrossRefGoogle Scholar
  72. Rosenthal, D. M. (2007). Phenomenological overow and cognitive access. Behavioral and Brain Sciences, 30, 521–522.CrossRefGoogle Scholar
  73. Schenck, C., & Mahowald, M. (2002). REM sleep behavior disorder: Clinical, developmental, and neuroscience perspectives 16 years after its formal identification in sleep. Sleep, 25(2), 120–138.Google Scholar
  74. Schwarz, S., & Maquet, P. (2002). Sleep imaging and neuropsychological assessment of dreams. Trends in Cognitive Sciences, 6, 23–30.CrossRefGoogle Scholar
  75. Sebastian, M. A. (2013). Not a HOT dream. In R. Brown (Ed.), Consciousness inside and out: Phenomenology, neuroscience, and the nature of experience, studies in brain and mind. Dordrecht: Springer.Google Scholar
  76. Shanahan, M., & Baars, B. (2007). Global workspace theory emerges unscathed. Behavioral and Brain Sciences, 30, 524–525.CrossRefGoogle Scholar
  77. Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PLoS One, 3, 1–9.CrossRefGoogle Scholar
  78. Sligte, I. G., Wokke, M. E., Tesselaar, J. P., Scholte, H. S., & Lamme, V. A. (2010). Magnetic stimulation of the dorsolateral prefrontal cortex dissociates fragile visual short-term memory from visual working memory. Neuropsychologia, 49, 1578–1588.CrossRefGoogle Scholar
  79. Sosa, E. (2005). Dreams and philosophy. Proceedings and Addresses of the American Philosophical Association, 79, 7–18.Google Scholar
  80. Soto, D., Maentylae, T., & Silvanto, J. (2011). Working memory without consciousness. Current Biology, 21(22), R912–R913.CrossRefGoogle Scholar
  81. Sperling, G. (1960). The information available in brief visual presentation. Psychological Monographs: General and Applied, 74(11), 1–29.CrossRefGoogle Scholar
  82. Stazicker, J. (2011). Attention, visual consciousness and indeterminacy. Mind and Language, 26, 156–184.CrossRefGoogle Scholar
  83. Stickgold, R., Malia, A., Maguire, D., Roddenberry, D., & O’Connor, M. (2000). Replaying the game: Hypnagogic images in normals and amnesics. Science, 290, 350–353.CrossRefGoogle Scholar
  84. Tononi, G. (2009). Sleep and dreaming. In S. Laurey & G. Tononi (Eds.), The neurology of consciousness: Cognitive neuroscience and neuropathology. Amsterdam: Elsevier.Google Scholar
  85. Turatto, M., Sandrini, M., & Miniussi, C. (2004). The role of the right dorsolateral prefrontal cortex in visual change awareness. Neuroreport, 15(16), 2549–2552.CrossRefGoogle Scholar
  86. Vogel, G. W., Barrowclough, B., & Giesler, D. D. (1972). Limited discriminability of REM and sleep onset reports and its psychiatric implications. Archives of Genaral Psychiatry, 26(5), 449–455.CrossRefGoogle Scholar
  87. Voss, U., Holzmann, R., Tuin, I., & Hobson, J. A. (2009). Lucid dreaming: A state of consciousness with features of both waking and non-lucid dreaming. Sleep, 32(9), 1191–1200.Google Scholar
  88. Wehrle, R., Czisch, M., Kaufmann, C., Wetter, T. C., Holsboer, F., Auer, D. P., et al. (2005). Rapid eye movement-related brain activation in human sleep: A functional magnetic resonance imaging study. Neuroreport, 16, 853–857.CrossRefGoogle Scholar
  89. Wehrle, R., Kaufmann, C., Wetter, T. C., Holsboer, F., Auer, D., Pollmaecher, T., et al. (2007). Functional microstates within human REM sleep: First evidence from fMRI of a thalamocortical network specific for phasic REM periods. European Journal of Neurosciences, 25, 863–871.CrossRefGoogle Scholar
  90. Weisberg, J. (2013). Sweet dreams are made of this? A hot response to Sebastian. In: Consciousness inside and out: Phenomenology, neuroscience, and the nature of experience, studies in brain and mind. Dordrecht: Springer.Google Scholar
  91. Windt, J. (2010). The immersive spatiotemporal hallucination model of dreaming. Phenomenology and Cognitive Science, 9, 295–316.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Programa de Maestría y Doctorado en FilosofíaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  2. 2.Instituto de Investigaciones Filosóficas, UNAMMexico CityMexico

Personalised recommendations