Synthese

, Volume 191, Issue 7, pp 1469–1492 | Cite as

The instructional information processing account of digital computation

Article

Abstract

What is nontrivial digital computation? It is the processing of discrete data through discrete state transitions in accordance with finite instructional information. The motivation for our account is that many previous attempts to answer this question are inadequate, and also that this account accords with the common intuition that digital computation is a type of information processing. We use the notion of reachability in a graph to defend this characterization in memory-based systems and underscore the importance of instructional information for digital computation. We argue that our account evaluates positively against adequacy criteria for accounts of computation.

Keywords

Digital computation Information processing Instructional information Turing machines Finite state automata Physical computation Computational taxonomy 

References

  1. Adriaans, P. (2010). A critical analysis of Floridi’s theory of semantic information. Knowledge, Technology & Policy, 23(1–2), 41–56. doi:10.1007/s12130-010-9097-5.CrossRefGoogle Scholar
  2. Adriaans, P., & van Emde Boas, P. (2011). Computation, information, and the arrow of time. In S. B. Cooper & A. Sorbi (Eds.), Computability in context (pp. 1–17). London: Imperial College Press.CrossRefGoogle Scholar
  3. Copeland, B. J. (1996). What is computation? Synthese, 108(3), 335–359. doi:10.1007/BF00413693.CrossRefGoogle Scholar
  4. Copeland, B. J. (1997). The broad conception of computation. American Behavioral Scientist, 40(6), 690–716. doi:10.1177/0002764297040006003.CrossRefGoogle Scholar
  5. Copeland, B. J. (2004). Computation. In L. Floridi (Ed.), The Blackwell guide to the philosophy of computing and information (pp. 3–17). Malden, MA: Blackwell.Google Scholar
  6. Fetzer, J. H. (2004). Information: Does it have to be true? Minds and Machines, 14(2), 223–229. doi:10.1023/B:MIND.0000021682.61365.56.CrossRefGoogle Scholar
  7. Floridi, L. (2010). Information: A very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. Floridi, L. (2014). Perception and Testimony as Data Providers. In F. Ibekwe-SanJuan & T. M. Dousa (Eds.) Theories of Information, Communication and Knowledge. doi:10.1007/978-94-007-6973-1_4
  10. Fresco, N. (2013). Information processing as an account of concrete digital computation. Philosophy & Technology, 26(1), 31–60. doi:10.1007/s13347-011-0061-4.
  11. Fresco, N. (In Press). Physical computation and cognitive science (1st ed., Vol. 12). New York, NY: Springer Berlin Heidelberg.Google Scholar
  12. Fresco, N. (unpublished). Objective computation vs. subjective computation.Google Scholar
  13. Fresco, N., & Primiero, G. (2013). Miscomputation. Philosophy & Technology, 26(3), 253–272. doi:10.1007/s13347-013-0112-0.
  14. Fresco, N., & Wolf, M. J. (unpublished). Connectionist computation as information processing.Google Scholar
  15. Godfrey-Smith, P. (2008). Information in biology. In D. Hull & M. Ruse (Eds.), Cambridge companions to philosophy (pp. 103–119). New York: Cambridge University Press.Google Scholar
  16. Godfrey-Smith, P., & Sterelny, K. (2008). Biological information. In E. N. Zalta The Stanford encyclopedia of philosophy (Fall). Stanford, CA: Stanford University. http://plato.stanford.edu/archives/fall2008/entries/information-biological/.
  17. Gurevich, Y. (2012). What is an algorithm? In M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, & G. Turán (Eds.), SOFSEM 2012: Theory and practice of computer science (Vol. 7147, pp. 31–42). Berlin: Springer.Google Scholar
  18. Hamblin, C. L. (1987). Imperatives. New York: Basil Blackwell.Google Scholar
  19. Harris, D. M., & Harris, S. L. (2013). Digital design and Computer architecture. Waltham, MA: Elsevier: Morgan Kaufmann.Google Scholar
  20. Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.Google Scholar
  21. Kaufmann, M. (2012). Interpreting imperatives. Dordrecht: Springer.CrossRefGoogle Scholar
  22. Lloyd, S. (2006). Programming the Universe: A quantum computer scientist takes on the cosmos. New York: Knopf.Google Scholar
  23. Mahner, M., & Bunge, M. (1997). Foundations of biophilosophy. Berlin: Springer.CrossRefGoogle Scholar
  24. Matthews, R. (2011). Natural computation. Jerusalem: The Institute for Advanced Studies, Hebrew University in Jerusalem. https://sites.google.com/site/iascomputationbrainhuji2011/home/previous-lectures/Matthews%282011%29NaturalComputation.pdf?attredirects=0&d=1.
  25. Mertaniemi, H., Forchheimer, R., Ikkala, O., & Ras, R. H. A. (2012). Rebounding droplet-droplet collisions on superhydrophobic surfaces: From the phenomenon to droplet logic. Advanced Materials. doi:10.1002/adma.201202980. http://doi.wiley.com/10.1002/adma.201202980
  26. Miestamo, M., & van der Auwera, J. (2007). Negative declaratives and negative imperatives: Similarities and differences. In A. Ammann (Ed.), Linguistics festival: May 2006, Bremen (pp. 59–77). Diversitas Linguarum v. 14. Bochum: Universitätsverlag Brockmeyer.Google Scholar
  27. Neary, T., & Woods, D. (2012). The complexity of small universal Turing machines: A survey. In M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, & G. Turán (Eds.), SOFSEM 2012: Theory and practice of computer science (Vol. 7147, pp. 385–405). Berlin: Springer.Google Scholar
  28. Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126. doi:10.1145/360018.360022.CrossRefGoogle Scholar
  29. Pérez-Ramírez, M., & Fox, C. (2003). Imperatives as obligatory and permitted actions. In A. Gelbukh (Ed.), Computational linguistics & intelligent text processing (Vol. 2588, pp. 52–64). Berlin: Springer.Google Scholar
  30. Piccinini, G. (2007a). Computing mechanisms. Philosophy of Science, 74(4), 501–526. doi:10.1086/522851.CrossRefGoogle Scholar
  31. Piccinini, G. (2007b). Computational modelling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115. doi:10.1080/00048400601176494.CrossRefGoogle Scholar
  32. Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38.CrossRefGoogle Scholar
  33. Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.Google Scholar
  34. Pylyshyn, Z. W. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: The MIT Press.Google Scholar
  35. Reed, C., & Norman, T. J. (2007). A formal characterisation of Hamblin’s action-state semantics. Journal of Philosophical Logic, 36(4), 415–448. doi:10.1007/s10992-006-9041-z.CrossRefGoogle Scholar
  36. Ross, A. (1941). Imperatives and logic. Theoria, 7(1), 46–71. doi:10.1111/j.1755-2567.1941.tb00034.x.Google Scholar
  37. Scarantino, A., & Piccinini, G. (2010). Information without truth. Metaphilosophy, 41(3), 313–330. doi:10.1111/j.1467-9973.2010.01632.x.CrossRefGoogle Scholar
  38. Searle, J. R. (1990). Is the brain a digital computer? Proceedings and Addresses of the American Philosophical Association, 64, 21–37.CrossRefGoogle Scholar
  39. Shagrir, O. (2001). Content, computation and externalism. Mind, 110(438), 369–400. doi:10.1093/mind/110.438.369.Google Scholar
  40. Van Leeuwen, J. (forthcoming). On Floridi’s method of levels of abstraction. Minds and Machines (Special Issue on Floridi and Philosophy of Information).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Engineering and Information SciencesUniversity of Wollongong (UoW)WollongongAustralia
  2. 2.Department of Mathematics and Computer Science Hagg-Sauer 368Bemidji State University #23BemidjiUSA

Personalised recommendations