, Volume 191, Issue 6, pp 1051–1057 | Cite as

Infinitesimals are too small for countably infinite fair lotteries



We show that infinitesimal probabilities are much too small for modeling the individual outcome of a countably infinite fair lottery.


Probability Infinity Infinitesimals Regularity 


  1. Bernstein, A. R., & Wattenberg, F. (1969). Non-standard measure theory. In W. A. J. Luxemberg (Ed.), Applications of model theory of algebra, analysis, and probability. New York: Holt, Rinehart and Winston.Google Scholar
  2. Corbae, D., Stinchcombe, M. B., & Zeman, J. (2009). An introduction to mathematical analysis for economic theory and econometrics. Princeton: Princeton University Press.Google Scholar
  3. Elga, A. (2004). Infinitesimal chances and the laws of nature. Australasian Journal of Philosophy, 82, 67–76.CrossRefGoogle Scholar
  4. Hájek, A. (2011). Staying regular?. In Australasian Association of Philosophy Conference.Google Scholar
  5. Kadane, J. B., Schervish, M. J., & Seidenfeld, T. (1996). Reasoning to a foregone conclusion. Journal of the American Statistical Association, 91, 1228–1235.CrossRefGoogle Scholar
  6. Mourges, M. H., & Ressayre, J. P. (1993). Every real closed field has an integer part. Journal of Symbolic Logic, 58, 641–647.CrossRefGoogle Scholar
  7. Pedersen, A.P. (2012). Impossibility results for any theory of non-Archimedean expected value (manuscript).Google Scholar
  8. Pruss, A. R. (2012). Infinite lotteries, perfectly thin darts and infinitesimals. Thought, 1, 81–89.Google Scholar
  9. Schervish, M. J., Seidenfeld, T., & Kadane, J. B. (1984). The extent of non-conglomerability of finitely additive probabilities. Probability Theory and Related Fields, 66, 205–226.Google Scholar
  10. Wenmackers, S., & Horsten, L. (2013). Fair infinite lotteries, Synthese, 190(1), 37–61.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhilosophyBaylor UniversityWacoUSA

Personalised recommendations