, Volume 190, Supplement 1, pp 57–78 | Cite as

On interchangeability of Nash equilibria in multi-player strategic games

  • Pavel Naumov
  • Brittany Nicholls


The article studies properties of interchangeability of pure, mixed, strict, and strict mixed Nash equilibria. The main result is a sound and complete axiomatic system that describes properties of interchangeability in all four settings. It has been previously shown that the same axiomatic system also describes properties of independence in probability theory, nondeducibility in information flow, and non-interference in concurrency theory.


Nash Equilibrium Interchangeability Axiomatization 



Brittany Nicholls have been supported by National Science Foundation through a CREU award given by Computing Research Association Committee on the Status Of Women in Computing Research in conjunction with the Coalition to Diversify Computing.


  1. Cohen, E. (1977). Information transmission in computational systems. In Proceedings of sixth ACM symposium on operating systems principles (pp. 113–139). Association for Computing Machinery.Google Scholar
  2. de Moivre, A. (1711). De Mensura Sortis seu; de Probabilitate Eventuum in Ludis a Casu Fortuito Pendentibus. Philosophical Transactions (1683–1775), 27, 213–264.CrossRefGoogle Scholar
  3. de Moivre, A. (1718). Doctrine of chances. London: Pearson.Google Scholar
  4. Dijkstra, E. W. (1971). Hierarchical ordering of sequential processes. Acta Informatica, 1, 115–138.CrossRefGoogle Scholar
  5. Donders, M. S., More, S. M., & Naumov, P. (2011). Information flow on directed acyclic graphs. In L. D. Beklemishev, R. de Queiroz (Eds.), WoLLIC, Lecture notes in computer science (Vol. 6642, pp. 95–109). Berlin: Springer.Google Scholar
  6. Encyclopædia Britannica. (1998). In A. de Moivre (Ed.) The new encyclopædia britannica (15 ed., Vol. 8, p. 226). Chicago: Encyclopædia Britannica.Google Scholar
  7. Geiger, D., Paz, A., & Pearl, J. (1991). Axioms and algorithms for inferences involving probabilistic independence. Computing and Informatics, 91(1), 128–141.CrossRefGoogle Scholar
  8. Halpern, J. Y., & O’Neill, K. R. (2008). Secrecy in multiagent systems. ACM Transactions on Information and System Security, 12(1), 1–47.CrossRefGoogle Scholar
  9. Herrmann, C. (1995). On the undecidability of implications between embedded multivalued database dependencies. Information and Computation, 122(2), 221–235.CrossRefGoogle Scholar
  10. Herrmann, C. (2006). Corrigendum to “On the undecidability of implications between embedded multivalued database dependencies” [Information and Computation 122(1995) 221–235]. Information and Computation, 204(12), 1847–1851.Google Scholar
  11. Lang, J., Liberatore, P., & Marquis, P. (2002). Conditional independence in propositional logic. Artificial Intelligence, 141(1/2), 79–121.CrossRefGoogle Scholar
  12. Miner More, S., & Naumov, P. (2010a). Hypergraphs of multiparty secrets. In 11th international workshop on computational logic in multi-agent systems, CLIMA XI , LNAI 6245, Lisbon, Portugal (pp. 15–32). New York: Springer.Google Scholar
  13. Miner, More S., & Naumov, P. (2010b). An independence relation for sets of secrets. Studia Logica, 94(1), 73–85.CrossRefGoogle Scholar
  14. More, S. M., & Naumov, P. (2011). Logic of secrets in collaboration networks. The Annals of Pure and Applied Logic, 162(12), 959–969.CrossRefGoogle Scholar
  15. More, S. M., Naumov, P., & Sapp, B. (2011). Concurrency Semantics for the Geiger-Paz-Pearl Axioms of independence. In Bezem, M. (ed.) Proceedings of 20th annual conference on computer science logic, CSL 2011, September 12–15, Bergen, Norway. LIPIcs (Vol. 12, pp. 443–457). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.Google Scholar
  16. Nash, J. (1951). Non-cooperative games. The Annals of Mathematics, 54(2), 286–295.CrossRefGoogle Scholar
  17. Naumov, P., & Nicholls, B. (2011). Game semantics for the Geiger-Paz-Pearl axioms of independence. In The third international workshop on logic, rationality and interaction (LORI-III), LNAI 6953 (pp. 220–232). Berlin: Springer.Google Scholar
  18. Naumov, P., & Nicholls, B. (2013) R.E. axiomatization of conditional independence. In proceedinigs of the 14th conference on theoretical aspects of rationality and knowledge (TARK ‘13) (pp. 148–155).Google Scholar
  19. Parker, Jr., D. S., & Parsaye-Ghomi, K. (1980). Inferences involving embedded multivalued dependencies and transitive dependencies. In Proceedings of the 1980 ACM SIGMOD international conference on management of data (pp. 52–57). New York, NY: ACM.Google Scholar
  20. Studený, M. (1990). Conditional independence relations have no finite complete characterization. In Information theory, statistical decision functions and random processes. Transactions of the 11th Prague conference. (Vol. B, pp. 377–396). London: Kluwer.Google Scholar
  21. Sutherland, D. (1986). A model of information. In Proceedings of ninth national computer security conference (pp. 175–183).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.McDaniel CollegeWestminsterUSA

Personalised recommendations