, Volume 190, Supplement 1, pp 103–134 | Cite as

On axiomatizations of public announcement logic

  • Yanjing WangEmail author
  • Qinxiang Cao


In the literature, different axiomatizations of Public Announcement Logic (PAL) have been proposed. Most of these axiomatizations share a “core set” of the so-called “reduction axioms”. In this paper, by designing non-standard Kripke semantics for the language of PAL, we show that the proof system based on this core set of axioms does not completely axiomatize PAL  without additional axioms and rules. In fact, many of the intuitive axioms and rules we took for granted could not be derived from the core set. Moreover, we also propose and advocate an alternative yet meaningful axiomatization of PAL  without the reduction axioms. The completeness is proved directly by a detour method using the canonical model where announcements are treated as merely labels for modalities as in normal modal logics. This new axiomatization and its completeness proof may sharpen our understanding of PAL  and can be adapted to other dynamic epistemic logics.


Public announcement logic Reduction axioms Composition axiom Dynamic epistemic logic Completeness Epistemic temporal logic 



The first author is supported by SSFC grant 11CZX054 and the Major Program of National Social Science Foundation of China (No. 12&ZD119). The authors would like to thank Johan van Benthem, Hans van Ditmarsch, Meiyun Guo, Wesley Holliday, Fenrong Liu, Ram Ramanujam, Tomoyuki Yamada and anonymous reviewers of this journal for their insightful comments on earlier versions of this paper.


  1. Aucher, G., & Herzig, A. (2011). Dynamic formal epistemology, Chap. Exploring the power of converse events. Berlin: Springer.Google Scholar
  2. Baltag, A., & Moss, L. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.CrossRefGoogle Scholar
  3. Baltag, A., Moss, L., & Solecki, S. (1998). The logic of public announcements, common knowledge, and private suspicions. In Proceedings of TARK ’98 (pp. 43–56). Los Altos, CA: Morgan Kaufmann Publishers.Google Scholar
  4. Blackburn, P., de Rijke, M., & Venema, Y. (2002). Modal logic. Cambridge: Cambridge University Press.Google Scholar
  5. Bonnay, D., & Égré, P. (2009). Inexact knowledge with introspection. Journal of Philosophical Logic, 38(2), 179–227.CrossRefGoogle Scholar
  6. Dégremont, C., Löwe, B., & Witzel, A. (2011). The synchronicity of dynamic epistemic logic. In TARK2011, Groningen.Google Scholar
  7. Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995). Reasoning about knowledge. Cambridge, MA: MIT Press.Google Scholar
  8. Gabbay, D. M. (2002). A theory of hypermodal logics: mode shifting in modal logic. Journal of Philosophical Logic, 31(3), 211–243.CrossRefGoogle Scholar
  9. Gerbrandy, J. (1999). Bisimulations on Planet Kripke. Ph.D. thesis, University of Amsterdam.Google Scholar
  10. Gerbrandy, J., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic, Language and Information, 6(2), 147–169.CrossRefGoogle Scholar
  11. Goldblatt, R., & Jackson, M. (2012). Well-structured program equivalence is highly undecidable. ACM Transactions on Computational Logic, 13(3), 26:1–26:8.CrossRefGoogle Scholar
  12. Halpern, J., van der Meyden, R., & Vardi, M. (2004). Complete axiomatizations for reasoning about knowledge and time. SIAM Journal on Computing, 33(3), 674–703.CrossRefGoogle Scholar
  13. Harel, D. (1985). Recurring dominoes: Making the highly undecidable highly understandable. In Selected papers of the international conference on “foundations of computation theory” on topics in the theory of computation (pp. 51–71). New York: Elsevier North-Holland.Google Scholar
  14. Herzig, A., & Lima, T. D. (2006). Epistemic actions and ontic actions: A unified logical framework. In: Proceedings of IBERAMIA-SBIA (pp. 409–418). Berlin: Springer.Google Scholar
  15. Holliday, W., Hoshi, T., & Icard, T. (2012). A uniform logic of information dynamics. In Proceedings of advances in modal logic 2012 (Vol. 9. pp. 348–367). London: College Publications.Google Scholar
  16. Hoshi, T. (2009). Epistemic dynamics and protocol information. Ph.D. thesis, Stanford.Google Scholar
  17. Liu, F. (2008). Changing for the better. Ph.D. thesis, University of Amsterdam.Google Scholar
  18. Miller, J., & Moss, L. (2005). The undecidability of iterated modal relativization. Studia Logica, 79(3), 373–407.CrossRefGoogle Scholar
  19. Parikh, R., & Ramanujam, R. (1985). Distributed processes and the logic of knowledge. In Proceedings of conference on logic of programs (pp. 256–268). London: Springer.Google Scholar
  20. Plaza, J. A. (1989). Logics of public communications. In M. L. Emrich, M. S. Pfeifer, M. Hadzikadic, & Z. W. Ras (Eds.), Proceedings of the 4th international symposium on methodologies for intelligent systems (pp. 201–216). Knoxville, TX: Oak Ridge National Laboratory.Google Scholar
  21. Stalnaker, R. (1978). Assertion. In P. Cole (Ed.), Syntax and semantics (Vol. 9). New York: Academic Press.Google Scholar
  22. van Benthem, J. (1999). Update as relativization. Unpublished notes.Google Scholar
  23. van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17(2), 129–155.CrossRefGoogle Scholar
  24. van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. van Benthem, J. (2012). Two logical faces of belief revision. Unpublished manuscript.Google Scholar
  26. van Benthem, J., Gerbrandy, J., Hoshi, T., & Pacuit, E. (2009). Merging frameworks for interaction. Journal of Philosophical Logic, 38(5), 491–526.CrossRefGoogle Scholar
  27. van Benthem, J., & Ikegami, D. (2008). Modal fixed-point logic and changing models. In A. Avron, N. Dershowitz, & A. Rabinovich (Eds.), Pillars of computer science (pp. 146–165). Heidelberg: Springer.Google Scholar
  28. van Benthem, J., & Minică, S. (2009). Toward a dynamic logic of questions. In X. He, J. F. Horty, & E. Pacuit (Eds.), Proceedings of the 2nd international workshop on logic, rationality and interaction (LORI-II), Vol. 5834 of FoLLI-LNAI (pp. 27–41). Berlin: Springer.Google Scholar
  29. van Benthem, J., van Eijck, J., & Kooi, B. (2006). Logics of communication and change. Information and Computation, 204(11), 1620–1662.CrossRefGoogle Scholar
  30. van der Hoek, W., & Pauly, M. (2006). Handbook of modal logic, Chap. Modal logic for games and information. Amsterdam: Elsevier.Google Scholar
  31. van Ditmarsch, H. (2003). The Russian Cards problem. Studia Logica, 75(1), 31–62.CrossRefGoogle Scholar
  32. van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic (Synthese Library, 1st ed.). Berlin: Springer.Google Scholar
  33. Wang, Y. (2006). Indexed semantics and its application in modelling interactive unawareness. Master’s thesis, University of Amsterdam.Google Scholar
  34. Wang, Y. (2011). On axiomatizations of PAL. In Proceedings of LORI-III (pp. 314–327).Google Scholar
  35. Wang, Y., & Li, Y. (2012). Not all those who wander are lost: dynamic epistemic reasoning in navigation. In Proceedings of advances in modal logic (Vol. 9. pp. 559–580). London: College Publications.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of PhilosophyPeking UniversityBeijingChina

Personalised recommendations