Intuitions in physics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper is an exploration of the role of intuition in physics. The ways in which intuition is appealed to in physics are not well understood. To the best of my knowledge, there is no analysis of the different contexts in which we might appeal to intuition in physics, nor is there any analysis of the different potential uses to which intuition might be put. In this paper I look to provide data that goes some way to giving a sense of the different contexts in which intuition is appealed to in physics. As I note in the conclusion, there is still much work to be done but I hope that the work here provides us with a first step in the journey to properly understand the use to which intuitions are put in physics and science more generally.

This is a preview of subscription content, log in to check access.

References

  1. Ahlers, M., & Taylor, A. M. (2010). Analytic solutions of ultrahigh energy cosmic ray nuclei revisited. Physical Review D, 82, 123005-1—123005-15.

    Google Scholar 

  2. Albino S. (2010) Hadronization of partons. Reviews of Modern Physics 82: 2489–2556

    Article  Google Scholar 

  3. Allahverdyan, A. E., & Galstyan, A. (2011). Le Chatelier’s principle in replicator dynamic. Physical Review E, 84, 041117-1—041117-11.

    Google Scholar 

  4. Barreto, W. (2010). Equivalence of nonadiabatic fluids. Physical Review D, 82, 124020-1–124020-8.

    Google Scholar 

  5. Bergvall, A., Berland, K., Hyldgaard, P., Kubatkin, S., & Lofwander, T. (2011). Graphene nanogap for gate-tunable quantum-coherent single-molecule electronics. Physical Review B, 84, 155451–155451-7.

    Google Scholar 

  6. Bunandar, D., Caveny, S. A., & Matzner, A. (2011). Measuring emission coordinates in a pulsar-based relativistic positioning system. Physical Review D, 84, 104005-1–104005-9.

    Google Scholar 

  7. Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82, 1225–1286, at p. 1272, and Torquato, S., & Stillinger, F. H. (2010). Jammed hard-particle packings: From Kepler to Bernal and beyond. Reviews of Modern Physics, 82, 2633–2672.

    Google Scholar 

  8. Clerk A. A., Devoret M. H., Girvin S. M., Marquardt F., Schoelkopf R. J. (2010) Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics 82: 155–1208

    Article  Google Scholar 

  9. de Regt H. (1997) Erwin Schrodinger, Anshaulichkeit, and quantum theory. Studies in the History and Philosophy of Modern Physics 28: 461–481

    Article  Google Scholar 

  10. de Regt H. (2001) Spacetime visualisation and the intelligibility of physical theories. Studies in the History and Philosophy of Modern Physics 32: 243–265

    Article  Google Scholar 

  11. DeWolfe, O., & Giddings, S. B. (2003). Scales and hierarchies in warped compactifications and brane worlds. Physical Review D, 67, 066008-1–066008-17.

    Google Scholar 

  12. Einstein A. (1981) Preface. In: Plank M. (ed) Where is science going?. Ox Bow Press, Woodbridge, CT, pp 9–14

    Google Scholar 

  13. Folina J. (1994) Poincare on mathematics, intuition and the foundations of science. Proceedings of the Philosophy of Science Association 2: 217–226

    Google Scholar 

  14. Franzosi, R. Giampaolo, M., & Illuminati, F. (2010). Quantum localization and bound-state formation in Bose-Einstein condensates. Physical Review A, 063620-1–063620-5.

    Google Scholar 

  15. Freidman M. (1990) Kant on concepts and intuitions in the mathematical sciences. Synthese 84: 213–257

    Google Scholar 

  16. García de Abajo F. J. (2010) Optical excitations in electron microscopy. Reviews of Modern Physics 82: 209–275

    Article  Google Scholar 

  17. Gieser S. (2005) The innermost kernel: depth psychology and quantum physics: Wolfgang Pauli’s dialogue with C.G. Jung. Springer, Berlin

    Google Scholar 

  18. Gisin N., Ribordy G., Tittel W., Zbinden H. (2002) Quantum cryptography. Reviews of Modern Physics 74: 145–195

    Article  Google Scholar 

  19. Godel, K. (1964). What is Cantor’s continuum problem? In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics: selected readings (pp. 470–485). Englewood Cliffs, NJ: Prentice-Hall.

  20. Heisenberg, W. (1926). Heisenberg to Pauli (8 June 1926). In Moore, W. (trans., 1989). Schrodinger: Life and thought. Cambridge: CUP.

  21. Kim, K-W., Moon, J-H., Lee, K-J., & Lee, H-W. (2011). Effect of spin diffusion on current generated by spin motive force. Physical Review B, 84, 054462-1–054462-13.

    Google Scholar 

  22. Kirilyuk A., Kimel A. V., Rasing T. (2010) Ultrafast optical manipulation of magnetic order. Reviews of Modern Physics 82: 2731–2784

    Article  Google Scholar 

  23. Kitagawa, T., Berg, E., Rudner, M., & Demler, E. (2010). Topological characterization of periodically driven quantum systems. Physical Review B, 82, 235114-1– 235114-12.

    Google Scholar 

  24. Mackenzie A. P., Maeno Y. (2003) The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Reviews of Modern Physics 75: 657–712

    Article  Google Scholar 

  25. Markosian N. (2004) A defense of presentism. Oxford Studies in Metaphysics 1: 47–82

    Google Scholar 

  26. Mitchell G. E., Richter A., Weidenmüller H. A. (2010) Random matrices and chaos in nuclear physics: Nuclear reactions. Reviews of Modern Physics 82: 2845–2901

    Article  Google Scholar 

  27. Otsuka T. (1993) Laboratory-frame view of nuclear rotation. Physical Review Letters 71: 1804–1807

    Article  Google Scholar 

  28. Parsons, C. (1979). Mathematical intuitions. In Proceedings of the Aristotelian Society, 80, 145–168, see, esp., pp. 147–148.

  29. Parsons C. (1995) Platonism and mathematical intuition in Kurt Godel’s thought. Bulletin of Symbolic Logic 1: 44–74

    Article  Google Scholar 

  30. Pauli W. (1979) Wissenschaftliche Briefwechsel, Band I: 1919-29. Wesley, New York

    Google Scholar 

  31. Pit R., Hervet H., Léger L. (2000) Direct experimental evidence of slip in hexadecane: Solid interfaces. Physical Review Letters 85: 980–983

    Article  Google Scholar 

  32. Pradhan S., Hansen A., Chakrabarti B. K. (2010) Failure processes in elastic fiber bundles. Reviews of Modern Physics 82: 499–555

    Article  Google Scholar 

  33. Rehr J. J., Albers R. C. (2000) Theoretical approaches to x-ray absorption fine structure. Reviews of Modern Physics 72: 621–654

    Article  Google Scholar 

  34. Reiner M., Burko L. (2003) On the limitations of thought experiments in physics and the consequences for physics education. Science and Education 12: 365–385

    Article  Google Scholar 

  35. Rueff J-P., Shukla A. (2010) Inelastic x-ray scattering by electronic excitations under high pressure. Reviews of Modern Physics 82: 847–896

    Article  Google Scholar 

  36. Sau, J. D., Tewari, S., Lutchyn, R. M., Stanescu, T. D., & Sarma, S. D. (2010). Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems. Physical Review Letters B, 214509-1–214509-26.

    Google Scholar 

  37. Schrodinger E. (1928) Collected papers on wave mechanics. Blackie and Son, London

    Google Scholar 

  38. Shen S-Q. (2007) Shen replies. Physical Review Letters 99: 179702

    Article  Google Scholar 

  39. Swingle, B. (2010). Entanglement Entropy and the Fermi Surface. Physical Review Letters, 105, 050502-1–050502-4.

    Google Scholar 

  40. Turner A. M., Vitelli V., Nelson D. R. (2010) Vortices on curved surfaces. Reviews of Modern Physics 82: 1301–1348

    Article  Google Scholar 

  41. Wu, B., Zhou, D., & Wang, L. (2011). Evolutionary dynamics on stochastic evolving networks for multiple-strategy game. Physical Review E, 84, 046111-1–046111-8.

    Google Scholar 

  42. Zhang, X., & Dagott, E. (2011). Anisotropy of the optical conductivity of a pnictide superconductor from the undoped three-orbital Hubbard mode. Physical Review D, 84, 132505-1–132505-5.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Tallant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tallant, J. Intuitions in physics. Synthese 190, 2959–2980 (2013). https://doi.org/10.1007/s11229-012-0113-z

Download citation

Keywords

  • Intuition
  • Physics
  • Philosophy of science