Advertisement

Synthese

, Volume 190, Issue 15, pp 2959–2980 | Cite as

Intuitions in physics

  • Jonathan TallantEmail author
Article

Abstract

This paper is an exploration of the role of intuition in physics. The ways in which intuition is appealed to in physics are not well understood. To the best of my knowledge, there is no analysis of the different contexts in which we might appeal to intuition in physics, nor is there any analysis of the different potential uses to which intuition might be put. In this paper I look to provide data that goes some way to giving a sense of the different contexts in which intuition is appealed to in physics. As I note in the conclusion, there is still much work to be done but I hope that the work here provides us with a first step in the journey to properly understand the use to which intuitions are put in physics and science more generally.

Keywords

Intuition Physics Philosophy of science 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlers, M., & Taylor, A. M. (2010). Analytic solutions of ultrahigh energy cosmic ray nuclei revisited. Physical Review D, 82, 123005-1—123005-15.Google Scholar
  2. Albino S. (2010) Hadronization of partons. Reviews of Modern Physics 82: 2489–2556CrossRefGoogle Scholar
  3. Allahverdyan, A. E., & Galstyan, A. (2011). Le Chatelier’s principle in replicator dynamic. Physical Review E, 84, 041117-1—041117-11.Google Scholar
  4. Barreto, W. (2010). Equivalence of nonadiabatic fluids. Physical Review D, 82, 124020-1–124020-8.Google Scholar
  5. Bergvall, A., Berland, K., Hyldgaard, P., Kubatkin, S., & Lofwander, T. (2011). Graphene nanogap for gate-tunable quantum-coherent single-molecule electronics. Physical Review B, 84, 155451–155451-7.Google Scholar
  6. Bunandar, D., Caveny, S. A., & Matzner, A. (2011). Measuring emission coordinates in a pulsar-based relativistic positioning system. Physical Review D, 84, 104005-1–104005-9.Google Scholar
  7. Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82, 1225–1286, at p. 1272, and Torquato, S., & Stillinger, F. H. (2010). Jammed hard-particle packings: From Kepler to Bernal and beyond. Reviews of Modern Physics, 82, 2633–2672.Google Scholar
  8. Clerk A. A., Devoret M. H., Girvin S. M., Marquardt F., Schoelkopf R. J. (2010) Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics 82: 155–1208CrossRefGoogle Scholar
  9. de Regt H. (1997) Erwin Schrodinger, Anshaulichkeit, and quantum theory. Studies in the History and Philosophy of Modern Physics 28: 461–481CrossRefGoogle Scholar
  10. de Regt H. (2001) Spacetime visualisation and the intelligibility of physical theories. Studies in the History and Philosophy of Modern Physics 32: 243–265CrossRefGoogle Scholar
  11. DeWolfe, O., & Giddings, S. B. (2003). Scales and hierarchies in warped compactifications and brane worlds. Physical Review D, 67, 066008-1–066008-17.Google Scholar
  12. Einstein A. (1981) Preface. In: Plank M. (ed) Where is science going?. Ox Bow Press, Woodbridge, CT, pp 9–14Google Scholar
  13. Folina J. (1994) Poincare on mathematics, intuition and the foundations of science. Proceedings of the Philosophy of Science Association 2: 217–226Google Scholar
  14. Franzosi, R. Giampaolo, M., & Illuminati, F. (2010). Quantum localization and bound-state formation in Bose-Einstein condensates. Physical Review A, 063620-1–063620-5.Google Scholar
  15. Freidman M. (1990) Kant on concepts and intuitions in the mathematical sciences. Synthese 84: 213–257Google Scholar
  16. García de Abajo F. J. (2010) Optical excitations in electron microscopy. Reviews of Modern Physics 82: 209–275CrossRefGoogle Scholar
  17. Gieser S. (2005) The innermost kernel: depth psychology and quantum physics: Wolfgang Pauli’s dialogue with C.G. Jung. Springer, BerlinGoogle Scholar
  18. Gisin N., Ribordy G., Tittel W., Zbinden H. (2002) Quantum cryptography. Reviews of Modern Physics 74: 145–195CrossRefGoogle Scholar
  19. Godel, K. (1964). What is Cantor’s continuum problem? In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics: selected readings (pp. 470–485). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  20. Heisenberg, W. (1926). Heisenberg to Pauli (8 June 1926). In Moore, W. (trans., 1989). Schrodinger: Life and thought. Cambridge: CUP.Google Scholar
  21. Kim, K-W., Moon, J-H., Lee, K-J., & Lee, H-W. (2011). Effect of spin diffusion on current generated by spin motive force. Physical Review B, 84, 054462-1–054462-13.Google Scholar
  22. Kirilyuk A., Kimel A. V., Rasing T. (2010) Ultrafast optical manipulation of magnetic order. Reviews of Modern Physics 82: 2731–2784CrossRefGoogle Scholar
  23. Kitagawa, T., Berg, E., Rudner, M., & Demler, E. (2010). Topological characterization of periodically driven quantum systems. Physical Review B, 82, 235114-1– 235114-12.Google Scholar
  24. Mackenzie A. P., Maeno Y. (2003) The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Reviews of Modern Physics 75: 657–712CrossRefGoogle Scholar
  25. Markosian N. (2004) A defense of presentism. Oxford Studies in Metaphysics 1: 47–82Google Scholar
  26. Mitchell G. E., Richter A., Weidenmüller H. A. (2010) Random matrices and chaos in nuclear physics: Nuclear reactions. Reviews of Modern Physics 82: 2845–2901CrossRefGoogle Scholar
  27. Otsuka T. (1993) Laboratory-frame view of nuclear rotation. Physical Review Letters 71: 1804–1807CrossRefGoogle Scholar
  28. Parsons, C. (1979). Mathematical intuitions. In Proceedings of the Aristotelian Society, 80, 145–168, see, esp., pp. 147–148.Google Scholar
  29. Parsons C. (1995) Platonism and mathematical intuition in Kurt Godel’s thought. Bulletin of Symbolic Logic 1: 44–74CrossRefGoogle Scholar
  30. Pauli W. (1979) Wissenschaftliche Briefwechsel, Band I: 1919-29. Wesley, New YorkGoogle Scholar
  31. Pit R., Hervet H., Léger L. (2000) Direct experimental evidence of slip in hexadecane: Solid interfaces. Physical Review Letters 85: 980–983CrossRefGoogle Scholar
  32. Pradhan S., Hansen A., Chakrabarti B. K. (2010) Failure processes in elastic fiber bundles. Reviews of Modern Physics 82: 499–555CrossRefGoogle Scholar
  33. Rehr J. J., Albers R. C. (2000) Theoretical approaches to x-ray absorption fine structure. Reviews of Modern Physics 72: 621–654CrossRefGoogle Scholar
  34. Reiner M., Burko L. (2003) On the limitations of thought experiments in physics and the consequences for physics education. Science and Education 12: 365–385CrossRefGoogle Scholar
  35. Rueff J-P., Shukla A. (2010) Inelastic x-ray scattering by electronic excitations under high pressure. Reviews of Modern Physics 82: 847–896CrossRefGoogle Scholar
  36. Sau, J. D., Tewari, S., Lutchyn, R. M., Stanescu, T. D., & Sarma, S. D. (2010). Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems. Physical Review Letters B, 214509-1–214509-26.Google Scholar
  37. Schrodinger E. (1928) Collected papers on wave mechanics. Blackie and Son, LondonGoogle Scholar
  38. Shen S-Q. (2007) Shen replies. Physical Review Letters 99: 179702CrossRefGoogle Scholar
  39. Swingle, B. (2010). Entanglement Entropy and the Fermi Surface. Physical Review Letters, 105, 050502-1–050502-4.Google Scholar
  40. Turner A. M., Vitelli V., Nelson D. R. (2010) Vortices on curved surfaces. Reviews of Modern Physics 82: 1301–1348CrossRefGoogle Scholar
  41. Wu, B., Zhou, D., & Wang, L. (2011). Evolutionary dynamics on stochastic evolving networks for multiple-strategy game. Physical Review E, 84, 046111-1–046111-8.Google Scholar
  42. Zhang, X., & Dagott, E. (2011). Anisotropy of the optical conductivity of a pnictide superconductor from the undoped three-orbital Hubbard mode. Physical Review D, 84, 132505-1–132505-5.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.University of NottinghamNottinghamUK

Personalised recommendations