Synthese

, Volume 190, Issue 14, pp 2867–2895 | Cite as

On the role of simplicity in science

Article

Abstract

Simple assumptions represent a decisive reason to prefer one theory to another in everyday scientific praxis. But this praxis has little philosophical justification, since there exist many notions of simplicity, and those that can be defined precisely strongly depend on the language in which the theory is formulated. The language dependence is a natural feature—to some extent—but it is also believed to be a fatal problem, because, according to a common general argument, the simplicity of a theory is always trivial in a suitably chosen language. But, this trivialization argument is typically either applied to toy-models of scientific theories or applied with little regard for the empirical content of the theory. This paper shows that the trivialization argument fails, when one considers realistic theories and requires their empirical content to be preserved. In fact, the concepts that enable a very simple formulation, are not necessarily measurable, in general. Moreover, the inspection of a theory describing a chaotic billiard shows that precisely those concepts that naturally make the theory extremely simple are provably not measurable. This suggests that—whenever a theory possesses sufficiently complex consequences—the constraint of measurability prevents too simple formulations in any language. This explains why the scientists often regard their assessments of simplicity as largely unambiguous. In order to reveal a cultural bias in the scientists’ assessment, one should explicitly identify different characterizations of simplicity of the assumptions that lead to different theory selections. General arguments are not sufficient.

Keywords

Simplicity Information Chaotic dynamics Empirical content Incommensurability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, A. (2004). Simplicity. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Winter 2004 Edition ed.). Stanford University.Google Scholar
  2. Balzer W., Moulines C. U., Sneed J. D. (1987) An architectonic for science. Reidel, DordrechtCrossRefGoogle Scholar
  3. Bird, A. (2004). Thomas Kuhn. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Summer 2004 Edition ed.). Stanford University.Google Scholar
  4. Bird, A., & Tobin, E. (2008). Natural kinds. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy(Summer 2008 Edition ed.). Stanford UniversityGoogle Scholar
  5. Carnap R. (1958) Beobachtungssprache und Theoretische Sprache. Dialectica 12(47–48): 236–248CrossRefGoogle Scholar
  6. Carnap R. (1966) Der Logische Aufbau der Welt (3rd ed). Felix Meiner, HamburgGoogle Scholar
  7. Carrier M. (2004) Semantic incommensurability and empirical comparability: The case of Lorentz and Einstein. Philosophia Scientiae 8: 73–94CrossRefGoogle Scholar
  8. Chaitin G. (1969) On the length of programs for computing finite binary sequences: Statistical considerations. Journal of the ACM 16: 145–159CrossRefGoogle Scholar
  9. Delahaye J.-P., Zenil H. (2008) Towards a stable definition of Kolmogorov-Chaitin complexity. Fundamenta Informaticae XXI: 1–15Google Scholar
  10. Douglas H. E. (2009) Reintroducing prediction to explanation. Philosophy of Science 76(4): 444–463CrossRefGoogle Scholar
  11. Feigl H. (1970) The “Orthodox” view of theories: Remarks in defense as well as critique. In: Radner M., Winokur S. (Eds.), Minnesota studies in the philosophy of science Vol. 4. University of Minnesota Press, Minneapolis, MN, pp 3–16Google Scholar
  12. Feyerabend P. K. (1962) Explanation, reduction, and empiricism. In: Feigl H., Maxwell G. (Eds.), Minnesota studies in the philosophy of science: Scientification explanation space and time Vol.3. University ofMinnesota Press, Minneapolis, MN, pp 28–97Google Scholar
  13. Feyerabend P. K. (1975) Against method: Outline of an anarchist: Theory of knowledge. Humanity Press, Atlantic Highlands, NJGoogle Scholar
  14. Godfrey-Smith P. (2003) Theory and reality. The University of Chicago Press, ChicagoGoogle Scholar
  15. Goodman N. (1955) Fact, fiction, and forecast (2nd ed). Harvard University Press, Cambridge, MAGoogle Scholar
  16. Goodman N. (1977) The structure of appearance (3rd ed). D. Reidel, DordrechtCrossRefGoogle Scholar
  17. Grünwald P. D., Vitanyi P. M. (2008) Algorithmic information theory. In: Behthem J., Adriaans P. (Eds.), Handbook of the philosophy of information. Elsevier, DordrechtGoogle Scholar
  18. Hempel C. (1966) Philosophy of natural science. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  19. Kelly K. T. (2009) Ockhams Razor truth and information. In: Behthem J., Adriaans P. (Eds.), Handbook of the philosophy of information. Elsevier, DordrechtGoogle Scholar
  20. Kemeny J. G., Oppenheim P. (1956) On reduction. Philosophical Studies 7: 6–19CrossRefGoogle Scholar
  21. Kolmogorov A. N. (1965) Three approaches to the quantitative definition of information. Problems Inform. Transmission 1: 1–7Google Scholar
  22. Kripke S. (1980) Naming and necessity. Harvard University Press, Cambridge, MAGoogle Scholar
  23. Kuhn T. S. (1996) Structure of scientific revolutions (3rd ed.). University of Chicago Press, ChicagoCrossRefGoogle Scholar
  24. Li M., Vitanyi P. (1997) An introduction to kolmogorov complexity and its applications (2nd ed.). Springer, New YorkCrossRefGoogle Scholar
  25. Mach, E. (1882). Über die Ökonomische Natur der Physikalischen Forschung. Almanach der Wiener Akademie, 179.Google Scholar
  26. Nagel E. (1961) The structure of science: Problems in the logic of scientific explanation. Harcourt, Brace & World Inc, New YorkGoogle Scholar
  27. Nowakowa I., Nowak L. (2000) The richness of idealization. Rodopi, AmsterdamGoogle Scholar
  28. Poincaré H. (1902) La Science et l’Hypothése. Ernest Flammarion Ed, ParisGoogle Scholar
  29. Popper K. (1959) The logic of scientific discovery. Basic Books, New YorkGoogle Scholar
  30. Porter, M. A., & Lansel, S. (2004). Graphical user interface to simulate classical billiard systems.Google Scholar
  31. Porter M. A., Lansel S. (2006) Mushroom billiards. Notices of the AMS 53: 334–337Google Scholar
  32. Psillos S. (1999) Scientific realism: How science tracks truth. Routledge, LondonGoogle Scholar
  33. Putnam H. (1962) What theories are not. In: Nagel E., Suppes P., Tarski A. (Eds.), Logic, ethodology and philosophy of science. Stanford University Press, Stanford, CA, pp 240–252Google Scholar
  34. Putnam H. (1975a) Explanation and reference. In Mind, language and reality, Volume 2 of in philosophical papers. Cambridge, MA, Cambridge University Press.CrossRefGoogle Scholar
  35. Putnam H. (1975b) Meaning of ’Meaning’. In Mind, language and reality, Volume 2 of in philosophical papers. Cambridge, MA, Cambridge University Press.CrossRefGoogle Scholar
  36. Putnam H. (1981) Reason, truth and history. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  37. Quine W. V. O. (1950) Two dogmas of empiricism. The Philosophical Review 60: 20–43Google Scholar
  38. Quine W. V. O. (1951) Ontology and ideology. Philosophical Studies 2: 11–15CrossRefGoogle Scholar
  39. Quine W. V. O. (1960) Word and object. The MIT Press, Boston, MAGoogle Scholar
  40. Quine W.V.O. (1969) Epistemology naturalized. In Ontological relativity and other essays. Columbia University Press., New YorkGoogle Scholar
  41. Quine W. V. O. (1993) In praise of observation sentences. The Journal of Philosophy 90(3): 107–116CrossRefGoogle Scholar
  42. Rabinovich M. I., Rulkov N. F. (2004) Chaotic dynamics. In: Scott A. (Ed.), Enyclopedia of nonlinear science. Routledge, New York, pp 118–128Google Scholar
  43. Rosch E. (1978) Principles of categorization. In: Rosch E., Lloyd B. (Eds.), Cognition and categorization. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 27–48Google Scholar
  44. Scheffler I. (1982) Science and subjectivity (2nd ed.). Hackett Pub. Co., IndianapolisGoogle Scholar
  45. Schmidt H.-J. (Spring 2008 Edition ed). (2008) Structuralism in physics. In: Zalta E. N. (Ed.), Stanford encyclopedia of philosophy Stanford, CA: Stanford University. Stanford University.Google Scholar
  46. Schwartz R. (2011) Goodman and the demise of syntactic and semantic models. In: Gabbay D. M., Woods J., Hartmann S. (Eds.), Handbook of the history of logic. Vol. 10: Inductive logics. North-Holland, Amsterdam, pp 391–414CrossRefGoogle Scholar
  47. Sober E. (2002) What is the problem of simplicity?. In: Keuzenkamp H., McAleer M., Zellner A. (Eds.), Simplicity, inference, and econometric modelling. Cambridge University Press, Cambridge, pp 13–32CrossRefGoogle Scholar
  48. Sokal A., Bricmont J. (2001) Science and sociology of science: Beyond war and peace. In: Labinger J., Collins H. (Eds.), The one culture? A conversation about science. University of Chicago Press, Chicago, pp 27–47Google Scholar
  49. Solomonoff J. R. (1964) A formal theory of inductive inference. Parts I and II. Information and Control 7(1-22): 224–254CrossRefGoogle Scholar
  50. Suppe F. (1972) What’s wrong with the received view on the structure of scientific theories?. Philosophy of Science 39(1): 1–19Google Scholar
  51. Suppes P. (1967) What is a scientific theory. In: Morgenbesser S. (Ed.), Philosophy of science today. Basic Books, New York, pp 55–67Google Scholar
  52. Fraassen B. (1980) The scientific image. Oxford University Press, OxfordCrossRefGoogle Scholar
  53. Fraassen B. (2008) Scientific representation: Paradoxes of perspective. Oxford University Press, OxfordCrossRefGoogle Scholar
  54. Will, C. M. (2006). The confrontation between general relativity and experiments. Living Reviews in Relativity 9(3).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*/FBK)TrentoItaly

Personalised recommendations